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Abstract

For decades, studies of endocrine-disrupting chemicals (EDCs) have challenged traditional concepts
in toxicology, in particular the dogma of “the dose makes the poison;” because EDCs can have effects
atlow doses that are not predicted by effects at higher doses. Here, we review two major concepts in
EDC studies: low dose and nonmonotonicity. Low-dose effects were defined by the National
Toxicology Program as those that occur in the range of human exposures or effects observed at
doses below those used for traditional toxicological studies. We review the mechanistic data for low-
dose effects and use a weight-of-evidence approach to analyze five examples from the EDC literature.
Additionally, we explore nonmonotonic dose-response curves, defined as a nonlinear relationship be-
tween dose and effect where the slope of the curve changes sign somewhere within the range of
doses examined. We provide a detailed discussion of the mechanisms responsible for generating
these phenomena, plus hundreds of examples from the cell culture, animal, and epidemiology litera-
ture. We illustrate that nonmonotonic responses and low-dose effects are remarkably common in
studies of natural hormones and EDCs. Whether low doses of EDCs influence certain human disor-
ders is no longer conjecture, because epidemiological studies show that environmental exposures to
EDCs are associated with human diseases and disabilities. We conclude that when nonmonotonic
dose-response curves occur, the effects of low doses cannot be predicted by the effects observed at
high doses. Thus, fundamental changes in chemical testing and safety determination are needed to
protect human health.
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L. Introduction

This review focuses on two major issues in the study of endocrine-disrupting chemicals (EDCs): low-
dose exposures and nonmonotonic dose-response curves (NMDRCs). These concepts are interre-
lated, and NMDRCs are especially problematic for assessing potential impacts of exposure when non-
monotonicity is evident at levels of exposure below those that are typically used in toxicological as-
sessments. For clarity of presentation, however, we will first examine each of the concepts separately.

A. Background: low-dose exposure

It is well established in the endocrine literature that natural hormones act at extremely low serum
concentrations, typically in the picomolar to nanomolar range. Many studies published in the peer-re-
viewed literature document that EDCs can act in the nanomolar to micromolar range, and some show
activity at picomolar levels.

1. What is meant by low dose?
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In 2001, at the request of the U.S, Environmental Protection Agency (EPA), the National Toxicology
Program (NTP) assembled a group of scientists to perform a review of the low-dose EDC literature
(1). At that time, the NTP panel defined low-dose effects as any biological changes 1) occurring in the
range of typical human exposures or 2) occurring at doses lower than those typically used in stan-
dard testing protocols, i.e. doses below those tested in traditional toxicology assessments (2). Other
definitions of low dose include 3) a dose below the lowest dose at which a biological change (or dam-
age) for a specific chemical has been measured in the past, ie. any dose below the lowest observed
effect level or lowest observed adverse effect level (LOAEL) (3), or 4) a dose administered to an ani-
mal that produces blood concentrations of that chemical in the range of what has been measured in
the general human population (i.e. not exposed occupationally, and often referred to as an environ-
mentally relevant dose because it creates an internal dose relevant to concentrations of the chemical
measured in humans) (4, 5). This last definition takes into account differences in chemical metabolism
and pharmacokinetics (i.e. absorption, distribution, and excretion of the chemical) across species and
reduces the importance of route of exposure by directly comparing similar blood or other tissue con-
centrations across model systems and experimental paradigms. Although these different definitions
may seem quite similar, using just a single well-studied chemical like bisphenol A (BPA) shows how
these definitions produce different cutoffs for exposure concentrations that are considered low dose
(Table 1). For many chemicals, including EDCs, a large number of studies meet the criteria for low-
dose studies regardless of whether the cutoff point for a low dose was based on the range of typical
human exposures, doses used in traditional toxicology, or doses that use an internal measure of body
burden.

Table 1.

Low-dose definitions and cutoff doses: BPA and DEHP as examples

Estimated range Doses Administered doses (to animals)
of human belowthe that produce blood levels in
Chemical exposures Doses below the NOAEL  LOAEL typical humans
BPA 0.4-5 pg/kg - d No NOAEL was ever <50 mg/kg- ~400 pg/kg- d to rodents and
679 established in toxicological d (38) nonhuman primates (4, 253)
studies (38)
DEHP 0.5-25pg/kg-d  <5.8mg/kg-d (681, 682) <29 mg/kg- Unknown
680 d (681, 682)

Estimates of human exposure are made from consumer product consumption data but do not take into account that

there are unknown sources of these chemicals. DEHP, Bis(2-ethylhexyl) phthalate.

Whether low doses of EDCs influence disease is a question that now extends beyond the laboratory
bench, because epidemiological studies show that environmental exposures to these chemicals are
associated with disorders in humans as well (see for examples Refs. 6-16). Although disease associa-
tions have historically been observed in individuals exposed to large concentrations of EDCs after in-
dustrial accidents (17-19) or via occupational applications (20-22), recent epidemiological studies
reveal links between environmentally relevant low concentrations and disease prevalence. With the
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extensive biomonitoring studies performed by the US. Centers for Disease Control and Prevention
(CDC) (23, 24) and similar environmental surveys performed in Europe (25) and elsewhere
(wwwstatcan.gc.ca/concepts/hs-es/measures-mesures-eng.htm), knowledge about environmental

exposures to EDCs and their associations with human health disorders has increased substantially.

Low-dose effects have received considerable attention from the scientific and regulatory communi-
ties, especially when examined for single well-studied chemicals like BPA (4, 27-32). The low-dose lit-
erature as a whole, however, has not been carefully examined for more than a decade. Furthermore,
this body of literature has been disregarded or considered insignificant by many (33, 34). Since the
NTP's review of the low-dose literature in 2001 (2), a very large body of data has been published in-
cluding 1) additional striking examples of low-dose effects from exposures to well-characterized
EDCs as well as other chemicals, 2) an understanding of the mechanisms responsible for these low-
dose effects, 3) exploration of nonmonotonicity in in vivo and in vitro systems, and 4) epidemiological
support for both low-dose effects and NMDRCs.

2. Is the term low dose a misnomer?

Endogenous hormones are active at extremely low doses, within and below the picomolar range for
endogenous estrogens and estrogenic drugs, whereas environmental estrogen mimics are typically
active in the nanomolar to micromolar range (for examples, see Refs. 35-38), although some show
effects at even lower concentrations (39-41). Importantly, the definitions above do not take into ac-
count the potency or efficacy of the chemical in question, a topic that will be discussed in greater de-
tail below. Instead, low dose provides an operational definition, in which doses that are in the range
of human exposure, or doses below those traditionally tested in toxicological studies, are considered
low. To be clear, none of these definitions suggest that a single concentration can be set as a low dose
cutoff for all chemicals. Using the above definitions, for some chemicals, low doses could potentially
be in the nanogram per kilogram range, but for most chemicals, doses in the traditional micro- and
milligram per kilogram range could be considered low doses because traditional approaches to test-
ing chemicals typically did not examine doses below the milligram per kilogram dose range.

B. Background: NMDRCs

We have defined low-dose studies according to the definitions established by the NTP panel of ex-
perts (2). However, because the types of endpoints that are typically examined at high doses in toxi-
cological studies are often different from the types of endpoints examined in low-dose studies, one
cannot assume that an effect reported in the low-dose range is necessarily different from what would
be observed at higher doses. For example, low doses of a chemical could affect expression of a hor-
mone receptor in the hypothalamus, an endpoint not examined in high-dose toxicology testing, and
high doses could similarly affect this same endpoint (but are likely to be unreported because high
doses are rarely tested for these types of endpoints). Thus, the presence of low-dose effects makes
no assumptions about what has been observed at higher concentrations. (As discussed elsewhere,
for the majority of chemicals in commerce, there are no data on health effects and thus no estab-
lished high- or low-dose range.) Therefore, low-dose effects could be observed at the lower end of a
monotonic or linear dose-response curve.
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In contrast, the definition of a NMDRC is based upon the mathematical definition of nonmonotonicity:
that the slope of the dose-response curve changes sign from positive to negative or vice versa at
some point along the range of doses examined (42). Often NMDRCs have a U- or inverted U-shape
(43); these NMDRCs are thus also often referred to as biphasic dose-response curves because re-
sponses show ascending and descending phases in relation to dose. Complex, multiphasic curves
have also been observed (41, 44, 45). NMDRCs need not span from true low doses to high (pharma-
cologically relevant) doses, although experiments with such a broad dose range have been per-
formed for several EDCs; the observation of nonmonotonicity makes no assumptions about the range
of doses tested. Examples of NMDRCs from in vitro cell culture and in vivo animal experiments, as well
as epidemiological examples, are presented in detail later in this review (see Sections I11.C.1-3).
Additional examples of NMDRCs are available in studies examining the effects of vitamins and other
essential elements on various endpoints (see for example (46); these will not be examined in detail in
this review due to space constraints.

NMDRCs present an important challenge to traditional approaches in regulatory toxicology, which as-
sume that the dose-response curve is monotonic. For all monotonic responses, the observed effects
may be linear or nonlinear, but the slope does not change sign. This assumption justifies using high-
dose testing as the standard for assessing chemical safety. When it is violated, high-dose testing
regimes cannot be used to assess the safety of low doses.

It should be noted that both low dose and nonmonotonicity are distinguished from the concept of
hormesis, which is defined as a specific type of response whereby “the various points along [the dose
response] curve can be interpreted as beneficial or detrimental, depending on the biological or eco-
logical context in which they occur” (47). Estimations of beneficial or adverse effects cannot be ascer-
tained from the direction of the slope of a dose-response curve (48-50). In their 2001 Low Dose
Peer Review, the NTP expert panel declined to consider whether any effect was adverse because “in
many cases, the long-term health consequences of altered endocrine function during development
have not been fully characterized” (2). There are still debates over how to define adverse effects (51-
53), so for the purposes of this review, we consider any biological change to be an effect. Importantly,
most epidemiological studies are by definition examining low doses (unless they are focusing on oc-
cupationally exposed individuals), and these studies typically focus on endpoints that are accepted to
be adverse for human health, although some important exceptions exist (54-56).

Finally, it is worth noting that any biological effect, whether it is observed to follow linear relation-
ships with administered dose or not, provides conclusive evidence that an EDC has biological activity.
Thus, other biological effects are likely to be present but may remain undetected or unexamined.
Many EDCs, including those used as pesticides, were designed to have biological effects (for example,
insecticides designed to mimic molting hormone). Thus, the question of whether these chemicals
have biological effects is answered unequivocally in their design; the question is what other effects
are induced by these biologically active agents, not whether they exist.

C. Low-dose studies: a decade after the NTP panel's assessment

In 2000, the EPA requested that the NTP assemble a panel of experts to evaluate the scientific evi-
dence for low-dose effects and dose-response relationships in the field of endocrine disruption. The
EPA proposed that an independent and open peer review of the available evidence would allow for a
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sound foundation on which the EPA could “determine what aspects, if any, of its standard guidelines
for reproductive and developmental toxicity testing [would] need to be modified to detect and char-
acterize low-dose effects” (2). The NTP panel verified that low-dose effects were observed for a multi-
tude of endpoints for specific EDCs including diethylstilbestrol (DES), genistein, methoxychlor, and
nonylphenol. The panel identified uncertainties around low-dose effects after exposure to BPA; al-
though BPA had low-dose effects on some endpoints in some laboratories, others were not found to
be consistent, leading the panel to conclude that it was “not persuaded that a low-dose effect of BPA
has been conclusively established as a general or reproducible finding” (2).

Since the NTP's review of low-dose endocrine disruptor studies, only a few published analyses have
reexamined the low-dose hypothesis from a broad perspective. In 2002, R. ]. Witorsch (57) analyzed
low doses of xenoestrogens and their relevance to human health, considering the different physiolo-
gies associated with pregnancy in the mouse and human. He proposed that low doses of endocrine
disruptors would not likely affect humans because, although low-dose effects had been observed in
rodents, the hormonal milieu, organs controlling hormonal release, and blood levels of estrogen
achieved are quite different in humans. There are, of course, differences in hormones and hormone
targets between rodents and humans (58), but the view that these differences negate all knowledge
gained from animal studies is not supported by evolutionary theory (59-61). This human-centered
stance argues against the use of animals for any regulatory testing (62) and runs counter to the simi-
larities in effects of EDCs on humans and animals; rodents proved to be highly predictive of the ef-
fects of DES on humans (63, 64). In a striking example, studies from mice and rats predicted that ges-
tational exposure to DES would increase mammary cancer incidence decades before women exposed
in utero reached the age where this increase in risk was actually observed (65-67).

In 2007, M. A. Kamrin (68) examined the low-dose literature, focusing on BPA as a test case. He sug-
gested that three criteria were required to support the low-dose hypothesis. First is reproducibility,
which he defined as “the same results are seen from the same causes each time a study is conducted.”
Furthermore, he proposed that the dose response for the effects must be the same from study to
study. Second is consistency, which he defined as the results all fitting into a pattern, whereby the re-
sults collected from multiple species and under variable conditions all show the same effect. And
third is proper conduct of studies, which he defined as including the appropriate controls and perfor-
mance under suitable experimental conditions as well as the inclusion of multiple doses such thata
dose-response curve can be obtained.

Although we and others (69-72) agree with the use of these criteria (reproducibility, consistency, and
proper experimental design), there are significant weaknesses in the logic Kamrin employed to define
these factors. First, suggesting that reproducibility is equivalent to the same results obtained each
time a study is conducted is unrealistic and not a true representation of what is required of replica-
tion. As has been discussed in other fields, “there is no end to the ways in which any two experiments
can be counted as the same — or different ... All experiments are the same in respect of their being
experiments; they are all different by virtue of being done at different places, at different times, by
different people, with different strains of rat, training regime, and so on” (73).

Furthermore, according to the Bradford-Hill criteria, a set of requirements accepted in the field of

epidemiology to provide adequate evidence of a causal relationship between two factors, a single
negative result (or even several studies showing negative results) cannot negate other studies that
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show adverse effects (74). Essentially, all scientists know that it is very easy for an experiment to find
no significant effects due to a myriad of reasons; it is more difficult to actually find effects, particularly
when using highly sophisticated techniques (69).

Second, the concept of consistency as a pattern that can be derived from all results is one we will use
below; using a weight-of-evidence (WoE) approach and several specific examples. However, Kamrin's
proposed idea that every study must show the same effect has the same weaknesses as discussed for
the proposed definition of reproducibility and does not acknowledge the obvious differences in many
species and strains. It also suggests that the identification of a single insensitive strain could negate
any number of positive studies conducted with appropriate animal models (75).

And finally, Kamrin suggested that only studies with appropriate controls should be used for analy-
ses, a criterion we agree should be followed. However, his own scrutiny of the low-dose animal litera-
ture fails to do so (68). He also suggested that studies use multiple doses so thata dose-response
curve can be obtained. Although studies using a single dose can be informative, we agree that dose-
response relationships provide important information to researchers and risk assessors alike.
However, this requirement is not helpful if there is an insistence on observing a linear response; as
we discuss in depth in this review, there are hundreds of examples of nonmonotonic and other non-
linear relationships between dose and endpoint. These should not be ignored.

In 2004, Hayes (76) reviewed the available literature concerning the effects of atrazine on amphibian
development, with a specific focus on the effect of ecologically relevant doses of this EDC on malfor-
mations of the gonads and other sexually dimorphic structures; in the case of aquatic exposures, it
can be difficult to determine what a cutoff for a low dose would be; thus, Hayes focused on studies
examining the effects of atrazine at levels that had been measured in the environment. He reviewed
the results produced by several labs, in which it was independently demonstrated that low concentra-
tions of atrazine produced gonadal abnormalities including hermaphroditism, males with extra testes,
discontinuous gonads, and other defects. Hayes' work also clearly addressed the so-called irrepro-
ducibility of these findings by analyzing the studies that were unable to find effects of the pesticide;
he noted that the negative studies had multiple experimental flaws, including contamination of the
controls with atrazine, overcrowding (and therefore underdosing) of experimental animals, and
other problems with animal husbandry that led to mortality rates above 80%.

In 2006, vom Saal and Welshons (77) examined the low-dose BPA literature, identifying more than
100 studies published as of July 2005 that reported significant effects of BPA below the established
LOAEL, of which 40 studies reported adverse effects below the 50 pg/kg - d safe dose set by the EPA
and U.S. Food and Drug Administration (FDA); all of these studies would be considered low dose ac-
cording to the NTP's definition (2). The authors proposed that these examples should be used as evi-
dence to support the low-dose hypothesis. Furthermore, this publication detailed the similarities
among the studies that were unable to detect any effects of low doses of BPA and established a set of
criteria required to accept negative studies. We have adapted the criteria detailed by Hayes (76) and
vom Saal and Welshons (77) to produce a set of requirements for low-dose studies; these criteria are
described in some detail below.

D. Why examine low-dose studies now?
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The developmental origins of health and disease hypothesis originated from studies showing that fe-
tal DES exposure could cause severe malformations and cancers of the reproductive tract, and other
studies demonstrating that fetal malnutrition could lead to adult diseases including metabolic syn-
drome, diabetes, and increased stroke incidence (78-81). Since that time, the developmental origins
of health and disease hypothesis has been extended to address whether diseases that are increasing
in prevalence in human populations could be caused by developmental exposures to EDCs (67, 82~
85). Evidence from the animal literature has been tremendously informative about the effects of EDC
exposures early in development and has driven new hypotheses to be tested in epidemiology studies
(86). Studies including several discussed in this review provide supportive evidence that the fetal and
neonatal periods are specifically sensitive to chemicals that alter endocrine signaling and that EDCs
could be contributing to a range of diseases.

Strong, reliable, and reproducible evidence documents the presence of low concentrations of EDCs
and other chemicals in human tissues and fluids, as well as in environmental samples (28, 87-89).
These studies indicate that samples collected from humans and the environment typically contain
hundreds of contaminants, usually in the parts-per-billion (ppb) range (90, 91). The obvious question
with potentially large public health implications is whether these concentrations are so low as to be
irrelevant to human health. The fact that epidemiological analyses (reviewed in Section IIL.C.3) repeat-
edly find associations between the measured concentrations in human samples and disease end-
points suggests it is inappropriate to assume the exposures are too low to matter. That is especially
the case given the empirical data (reviewed in Section IL.A) from animal and cell culture experiments
showing effects can be caused by concentrations comparable (and sometimes below) what is mea-
sured in humans and also the detection of NMDRCs in some of those same experiments.

In the human biomonitoring field, large databases such as the CDC's National Health and Nutrition
Examination Survey (NHANES) have allowed researchers to make comparisons between groups of
individuals with various exposure criteria; some of these studies will be addressed in detail in subse-
quent sections of this review. Although by definition these databases examine low-dose exposures,
their use has been the subject of significant debate. Because of the large number of chemicals that
have been measured (>300 in the most recent NHANES by the CDC) and the large number of health
outcomes and other disease-related data collected from the individuals that donated biological sam-
ples, it has been argued that the number of possible associations that could be made would lead to a
significant number of false positives (92); thus, associations could be found simply because of exten-
sive data dredging. This has led some to suggest that these studies as a whole should be rejected (93,
94).

In response to these criticisms, epidemiologist Jan Vandenbroucke (95) notes, “researchers do not
mindlessly grind out one analysis after another”; the examination of these databases for associations
between chemical exposures and health effects does not entail the statistical comparison between all
possible factors, calculated as some 8800 comparisons in the CDC's NHANES database (92). Instead,
epidemiologists typically focus on a select number of comparisons that address relationships be-
tween chemicals and diseases identified a priori (96, 97), often because of mechanistic data obtained
in laboratory animals or in vitro work with human and animal cells and tissues. Repeated findings of
links between EDC exposures and diseases in epidemiological analyses of biomonitoring data based
on a priori hypotheses suggests these relationships should not be rejected as a statistical artifact and,
instead, should be the basis for significant concern that low-dose effects can be detected in the gen-

eral population (85, 98).
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E. Mechanisms for low-dose effects

The endocrine system is particularly tuned to respond to very low concentrations of hormone, which
allows an enormous number of hormonally active molecules to coexist in circulation (38). As a lig-
and-receptor system, hormones act by binding to receptors in the cell membrane, cytosol, or the nu-
cleus. The classical effects of nuclear hormone receptors influence gene expression directly, although
rapid nongenomic actions at membrane-associated receptors are now well documented and ac-
cepted. Membrane receptors are linked to different proteins in the cell, and binding to these recep-
tors typically changes cellular responses in a rapid fashion (99), although the consequence of a rapid
signaling event could be the activation of a nuclear transcription factor, leading to responses that take
longer to detect. Peptide hormones can also influence gene expression directly (see Refs. 100 and
101 for examples).

There are several means by which the endocrine system displays specificity of responses to natural
hormones. Many hormone receptors are expressed specifically in a single or a few cell types (for ex-
ample, receptors for TSH are localized to the thyroid), whereas some (like thyroid hormone recep-
tors) are found throughout the body (102). For receptors that are found in multiple cell types, differ-
ent effects are produced in part due to the presence of different coregulators that influence behav-
fors of the target genes (103-105). And finally, some hormones have multiple receptors [for example
estrogen receptor (ER)a and ERB], which are expressed in different quantities in different cell types
and organs and can produce variable effects on gene expression or cellular phenomena (cell prolif-
eration vs. apoptosis) (102, 106).

The typical physiological levels of the endogenous hormones are extremely low, in the range of 10-
900 pg/ml for estradiol, 300-10,000 pg/ml for testosterone, and 8-27 pg/ml for T, (see Table 2).
Importantly, steroid hormones in the blood are distributed into three phases: free, representing the
unconjugated, unbound form; bioavailable, representing hormones bound to low-affinity carrier pro-
teins such as albumin; and inactive, representing the form that is bound to high-affinity binding pro-
teins such as SHBG or a-fetoprotein (38) (Fig. 1A). When the circulating levels in blood are corrected
for the low fraction of the hormones that are not bound to serum binding proteins, the free concen-
trations that actually bring about effects in cells are even lower, for example 0.1-9 pg/ml for estra-
diol. Concentrations of active hormones will vary based on the age and physiological status of the in-
dividual (ie. plasma testosterone levels are less than 1 ng/ml in male children but increase to approx-
imately 5-7 ng/ml in adulthood; during menses, estradiol levels are typically less than 100 pg/ml, but
just before ovulation, they spike to 800 pg/ml; etc.) (107, 108). Of course, it should be noted that ac-
tive concentrations of natural hormones vary somewhat from species to species and can even vary
between strains of the same species (109).
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Table 2.

Ranges of endogenous hormones in humans (from Ref. 108)

Free concentration  Total concentration Free concentration Total concentration
Hormone (females) (females) (males) (males)
Cortisol 20-300 ng/ml 20-300 ng/ml o
Estradiol 0.5-9 pg/ml (adult <20 pg/ml (prepubertal) 10-60 pg/ml (adult)
female)
20-800 pg/ml
(premenopausal)
<30 pg/ml
(postmenopausal)
Progesterone 0.2-0.55 ng/ml 0.1-0.4 ng/ml
{prepubertal) {(prepubertal)
0.02-0.80 ng/ml 0.2-2 ng/ml (adult)
(follicular phase)
0.90-4 ng/ml (luteal
phase)
<0.5 ng/ml
(postmenopausal)
Insulin 0-250 pmol/liter 0-250 pmol/liter
GH 2-6 ng/ml 2-6 ng/ml
Prolactin 0-15 ng/ml 0-10 ng/ml
Testosterone 9-150 pg/ml (adult) 0.3-250 ng/ml
Thyroid 8-30 pg/ml (10-35 8-30 pg/ml (10-35
hormone pM) pM)
TSH 0.5-5 pU/ml 0.5-5 pU/ml
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Figurel,

Characteristics and activities of natural hormones. A, This schematic depicts a typical relationship of three phases of
circulating hormones: free (the active form of the hormone), bioavailable (bound weakly to proteins such as albu-
min), and inactive (bound with high affinity to proteins such as SHBG). These three phases actas a buffering system,
allowing hormone to be accessible in the blood, but preventing large doses of physiologically active hormone from
circulating, With EDCs, there may be little or no portion maintained in the inactive phase. Thus, the entirety or major-
ity of a circulating EDC can be physiologically active; the natural buffering system is not present, and even a low con-
centration of an EDC can disrupt the natural balance of endogenous hormones in circulation. B, Schematic example of
the relationship between receptor occupancy and hormone concentration. In this theoretical example, at low concen~
trations, an increase in hormone concentration of x (from 0 to 1x) causes an increase in receptor occupancy of ap-
proximately 50% (from 0 to 50%, see yellow box.) Yet the same increase in hormone concentration at higher doses
(from 4x to 5x) causes an increase in receptor occupancy of only approximately 4% (from 78 to 82%, see red box).

There are several reasons why endogenous hormones are able to act at such low circulating concen-
trations: 1) the receptors specific for the hormone have such high affinity that they can bind suffi-
cient molecules of the hormone to trigger a response, 2) there is a nonlinear relationship between
hormone concentration and the number of bound receptors, and 3) there is also a nonlinear rela-
tionship between the number of bound receptors and the strongest observable biological effect.
Welshons and colleagues (38) describe how hormone concentration influences receptor occupancy:
“receptor occupancy is never determined to be linear in relation to hormone concentration ... At con-
centrations above the Ky [the dissociation constant for receptor-ligand binding kinetics], saturation
of the response occurs first, and then at higher concentrations, saturation of receptors is observed”
What this means is that at low doses of hormone, a 10-fold increase in hormone concentration can
have a 9-fold increase in receptor occupancy, whereas at high doses of hormone, a 10-fold increase
in hormone concentration produces a less than 1.1-fold increase in receptor occupancy (38) (Fig._1
B). Thus, even moderate changes in hormone concentration in the low-dose range can produce sub-
stantial changes in receptor occupancy and therefore generate significant changes in biological ef-
fects. Welshons et al. (38) also note that a near-maximum biological response can be observed with-
out a high rate of receptor occupancy, a situation that was previously termed the spare receptor hy-
pothesis (110, 111); that is, the response mechanism saturates before all of the receptors are satu-
rated. The presence of spare receptors is the basis for saying that these receptor systems are tuned
to detect low concentrations that lead to occupancy of 0.1-10% of total receptors. Within this range

https://www.ncbi.nim.nih.gov/pmc/articles/PMC3365860/ 11125



12/14/22, 8:57 AM Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

of low receptor occupancy, there is high proportionality between changes in the free hormone con-
centration and changes in receptor occupancy, and a change in receptor occupancy by a ligand for
the receptor is required to initiate changes in receptor-mediated responses (38).

There are additional reasons why natural hormones are active at low doses: 4) hormones have a
strong affinity for their receptors (relative to affinity for other receptors) because many hormones
are secreted from a single gland or site in the body but must have effects throughout the body in mul-
tiple tissues and 5) blood concentrations of hormones are normally pulsatile in nature, with the re-
lease of one hormone often controlled by the pulsatile release of another hormone (112, 113), and
both the frequency and the amplitude of pulses modulate the biological response; hormones are also
influenced by circadian rhythms, with dramatic differences in hormone secretion depending on the

time of day (114, 115).

For many years, the mechanisms by which some environmental chemicals acted at low doses were
not well understood. In 1995, the National Research Council appointed the Committee on Hormonally
Active Agents in the Environment to address public concerns about the potential for adverse effects
of EDCs on human health (116). At the time, work on understanding the mechanisms by which EDCs
exert their effects was in its infancy, and in the executive summary, the committee stated, “Lack of
knowledge about a mechanism does not mean that a reported effect is unconfirmed or unimportant,
nor does demonstration of a mechanism document that the resulting effects are unique to that mech-
anism or are pervasive in natural systems.” Since that time, a tremendous amount of work has been
dedicated to understanding the molecular mechanisms of action of EDCs, and in particular the mech-
anisms responsible for low-dose effects.

1. General mechanisms for EDC action

As discussed above, the endocrine system evolved to function when unbound physiologically active
ligands (hormones) are present at extremely low doses (117). Because of shared receptor-mediated
mechanisms, EDCs that mimic natural hormones have been proposed to follow the same rules and
therefore have biological effects at low doses (38, 118). Similarly, EDCs that influence in any way the
production, metabolism, uptake, or release of hormones also have effects at low doses, because even
small changes in hormone concentration can have biologically important consequences (38, 119).

The estrogen-response mechanisms have been extensively studied with regard to the effects of en-
dogenous estrogens and estrogenic drugs. In classical, genomic estrogen action, when endogenous
estrogens bind to ER, those receptors bind to estrogen response element sequences or to a number
of other response element sites adjacent to the genes directly responsive to estrogens; this binding
influences transcription of estrogen-sensitive genes (120). Xenoestrogens produce the same reac-
tions; these chemicals bind to ERs, which then initiate a cascade of molecular effects that ultimately
modify gene expression. Therefore, for the actions of estrogenic EDCs, molecular mechanisms and
targets are already known in some detail. Similar mechanisms are induced by the binding of andro-
gens to the androgen receptor, or thyroid hormone agonists to the thyroid hormone receptor, among
others. Additionally, there are EDCs that act as antagonists of these hormone systems, binding to a re-
ceptor, but not activating the receptor's typical response, and preventing the binding or activity of the
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endogenous ligand. Finally, many EDCs bind to the receptor and trigger a response that is not neces-
sarily the same as that triggered by the endogenous estrogens; these are termed selective ER modu-
lators (SERMs). Ultimately, all of these actions occur at the level of the receptor.

Many studies have been dedicated to the understanding of which EDCs bind to which nuclear hor-
mone receptors and how the binding affinities compare to the natural steroid. Thus, many of these
chemicals have been classified as weak hormones. Yet studies have shown that, for example, the so-
called weak estrogens like BPA can be equally potent as endogenous hormones in some systems,
causing biological effects at picomolar levels (30, 38, 41, 121). Both endogenous estrogens and EDCs
can bind to ER associated with the cell membrane [membrane-associated ER (mER)a and mER@] that
are identical to the nuclear ER (122~124), and a transmembrane ER called G-protein coupled recep-
tor 30 that is structurally dissimilar to the nuclear ER and encoded by a distinct gene (125, 126). In
many cells, 5-10% of total ERa and ER are localized to the plasma membrane (124); these mem-
brane-associated receptors are capable of nongenomic steroid action in various cell types (30, 121,
127); thus, rapid and potent effects are well documented for many EDCs including BPA, DES, endosul-
fan, dichlorodiphenyldichloroethylene (DDE), dieldrin, and nonylphenol, among others (41, 128-
130).

Finally, EDCs have other effects that are not dependent on binding to either classical or membrane-
bound steroid hormone receptors. EDCs can influence the metabolism of natural hormones, thus
producing differences in the amount of hormone that is available for binding either because more
(or less) hormone is produced than in a typical system or because the hormone is degraded faster
(or slower) than is normal. Other EDCs influence transport of hormone, which can also change the
amount of hormone that is available for receptor binding. And EDCs can also have effects that are in-
dependent from known endocrine actions. One example is the effect of endogenous hormones and
EDCs on ion channel activity. BPA, dichlorodiphenyltrichloroethane (DDT), DES, nonylphenol, and
octylphenol have all been shown to disrupt Ca?* channel activity and/or Ca2* signaling in some cell
types (131-134). This example illustrates how both natural hormones and EDCs can have hormonal
activity via binding to nuclear hormone receptors but may also have unexpected effects via receptor-
mediated actions outside of the classical endocrine system.

2. Mechanisms of EDC-induced low-dose actions

The various mechanisms by which EDCs act in vitro and in vivo provide evidence to explain how these
chemicals induce effects that range from altered cellular function, to abnormal organ development, to
atypical behaviors. Just as natural hormones display nonlinear relationships between hormone con-
centration and the number of bound receptors, as well as between the number of bound receptors
and the maximal observable biological effect, EDCs obey these rules of binding kinetics (38). Thus, in
a way, EDCs exploit the highly sensitive endocrine system and produce significant effects at relatively
low doses.

To gain insight into the effects of natural hormones and EDCs on gene expression profiles, it is possi-
ble to calculate doses that produce the same effect on proliferation of cultured cells, i.e. the quantita-
tive cellular response doses, and determine the effect of those doses on transcriptomal signature
profiles. When this is done for estradiol and EDCs with estrogenic properties, the affected estrogen-
sensitive genes are clearly different (135). However, an interesting pattern emerges: comparing pro-
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files among only the phytoestrogens shows striking similarities in the genes up- and down-regulated
by these compounds; profile comparisons between only the plastic-based estrogens also show simi-
larities within this group. Yet even more remarkable is what occurs when the doses are selected not
based on cell proliferation assays but instead on the ability of estradiol and estrogen-mimics to in-
duce a single estrogen-sensitive marker gene. When doses were standardized based on marker gene
expression, the transcriptomal signature profiles were very similar between estradiol and estrogen
mimics (135). Taken together, these results suggest that the outcomes of these experiments are con-
textual to the normalization parameter and that marker gene expression and cell proliferation are
not superimposable. This indicates that the biological level at which the effects of chemicals are exam-
ined (i.e. gene expression, cellular, tissue, organ, or organismal) can greatly impact whether low-dose
effects are observed and how these effects are interpreted.

There are several other mechanisms by which low-dose activities have been proposed. One such pos-
sibility is that low doses of EDCs can influence the response of individuals or organs/systems within
the body to natural hormones; thus, the exposed individual has an increased sensitivity to small
changes in endogenous steroids, similar to the effects of intrauterine position (see Ref. 136 and
Section LF). In fact, several studies have shown that exposure to EDCs such as BPA during perinatal
development can influence the response of the mammary gland to estrogen (137, 138) and the
prostate to an estrogen-testosterone mixture similar to the concentrations produced in aging men
(139-142). There is also evidence that EDCs work additively or even synergistically with other chemi-
cals and natural hormones in the body (143-145). Thus, it is plausible that some of the low-dose ef-
fects of an EDC are actually effects of that exogenous chemical plus the effects of endogenous
hormone.

Finally, it should be noted that during early development, the rodent fetus is largely, but not com-
pletely (146), protected from estrogen via the binding activity of a-fetoprotein, a plasma protein pro-
duced in high levels by the fetal liver (147). Some estrogen-like EDCs, however, bind very weakly to a-
fetoprotein, and therefore, it is likely that this protein does not provide protection to the fetus during
these sensitive developmental periods (36, 148). Furthermore, because EDCs may not bind to o-feto-
protein or other high-affinity proteins in the blood (148-150) and can have a higher binding affinity
to proteins like albumin (compared with natural estrogens) (36, 149), the balanced buffer system in
place for endogenous hormones may be disturbed (Fig, 1A). Thus, whereas only a portion of endoge-
nous hormones are bioavailable, the entirety of a circulating EDC could be physiologically active.

The effects of hormones and EDCs are dependent on dose, and importantly, low (physiological) doses
can be more effective at altering some endpoints compared with high (toxicological) doses. There are
many well-characterized mechanisms for these dose-specific effects including signaling via single vs.
multiple steroid receptors due to nonselectivity at higher doses (30), receptor down-regulation at
high doses vs. up-regulation at low doses (151, 152), differences in the receptors present in various
tissues (153, 154), cytotoxicity at high doses (155), and tissue-specific components of the endocrine-
relevant transcriptional apparatus (104, 105). Some of these factors will be addressed in Section IIL.B
in the section dedicated to NMDRCs.

F. Intrauterine position and human twins: examples of natural low-dose effects
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Hormones have drastically different effects at different periods of development. In a now classical
Endocrinology paper, Phoenix and colleagues (156) showed that hormone exposures during early de-
velopment, and in particular fetal development, had organizational effects on the individual, whereby
the developing organs were permanently reorganized by exposure to steroids. Permanent, nonre-
versible masculinization of the developing body plan by androgen exposure in utero is an example.
These organizational effects are in contrast to the effects of the same hormones, at similar or even
higher doses, on adults. The effects of steroids on individuals after puberty have been termed activa-
tional, because the effects on target organs are typically transient; withdrawal of the hormone re-

turns the phenotype of the individual to the preexposed state (157), although this is not always the
case (158).

One of the most striking examples of the ability of low doses of hormones to influence a large reper-
toire of phenotypes is provided by the study of intrauterine positioning effects in rodents and other
animals. The rodent uterus in particular, where each fetus is fixed in position along a bicornate uterus
with respect to its neighbors, is an excellent model to study how hormones released from neighbor-
ing fetuses (159) can influence the development of endocrine-sensitive endpoints (31). Importantly,
differences in hormonal exposures by intrauterine position are relatively small (see Fig._2) (160).
Thus, even a small magnitude in differences of hormonal exposures is sufficient to generate effects
on behavior, physiology, and development.
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2F Male
E2 = 101 pg/ml
T= 4.2 ng/m!

2F Female

E2 = 138 pg/ml
T= 1.5 ng/ml
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E2 = 106 pg/ml
T= 1.8 ng/ml
1MF Male
£2 = 94 pg/mi
T= 4.6 ng/ml
2M Male
2M fFemale - 4 W 78 pg/ml
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Figure 2,

Intrauterine position produces offspring with variable circulating hormone levels, Fetuses are fixed in position in the
bicornate rodent uterus, thus delivery via cesarean section has allowed for study of the influence of intrauterine posi-
tion on behaviors, physiology, and organ morphology. lliustrated here are the differences in estradiol (E2) and testos-
terone (T) concentrations measured in male and female fetuses positioned between two male neighbors (2M), two fe-
male neighbors (2F), or neighbors of each sex (1MF). Direction of blood flow in the uterine artery (dark vessel) and
vein (light vessel) is indicated by an arrow (159).

The earliest studies of intrauterine position compared behavioral characteristics of females relative
to their position in the uterus (161-164); male behavior was also affected by intrauterine position
(161, 165-167). Subsequent studies of intrauterine position showed that position in the uterus influ-
enced physiological endpoints (157, 160-162, 168-174) as well as morphological endpoints in fe-
male rodents (160, 161, 163, 164, 175-177). Male physiology and morphological endpoints were
similarly affected by intrauterine position (165, 167, 177-179).

The endocrine milieu of the uterine environment has been implicated in these effects because differ-
ences in hormonal exposure have been observed based on intrauterine position (Fig. 2). The produc-
tion of testosterone in male mice starting at approximately d 12 of gestation allows for passive trans-
fer of this hormone to neighboring fetuses (159, 160, 180). Thus, fetuses positioned between two
male neighbors have slightly higher testosterone exposures compared with fetuses positioned be-
tween one male and one female or two female neighbors (168, 181-183). These data indicate that
very small differences in hormone exposures during fetal development are capable of influencing a
variety of endpoints, many of which become apparent only during or after puberty. Furthermore,
small differences in hormone exposures may be compounded by other genetic variations such as
those normally seen in human populations.
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Intrauterine effects have been observed in animals with both large litters and singleton or twin births
including ferrets, pigs, hamsters, voles, sheep, cows, and goats (136, 184, 185). But perhaps the most
compelling evidence for intrauterine effects comes from human twin studies. Many studies have
found that the sex of the fetuses impacts the phenotype of one or more of the twins, with significant
evidence suggesting that male twins strongly influence a female co-twin; endpoints including sensa-
tion seeking (186), ear superiority (187, 188), brain and cerebellum volume (189),
masculine/feminine behaviors and aggression levels (190-192), handedness (193, 194), reproduc-
tive fitness (192, 195), finger length ratios (196), risk for developing eating disorders (197), and
birth weight (198) were all affected in females with a male twin. From these studies, many authors
have concluded that testosterone from male fetuses influences developmental parameters in female
twins; typically, male same-sex twins do not display altered phenotypes for these endpoints. Yet im-
portantly, limited studies indicate that female twins can influence their uterine pairs, with some be-
haviors affected in male co-twins (191); breast cancer incidence in women and testicular cancer in
men have also been shown to be influenced by having a female co-twin (83, 199, 200).

Although the mechanisms for these intrauterine effects are not completely understood, very small
differences in hormone exposures have been implicated, making the effects of twin gestations a natu-
ral example of low-dose phenomena. In the human fetus, the adrenals produce androgens that are
converted to estrogen by the enzyme aromatase, specifically in the placenta. In a human study de-
signed to compare hormone levels in the amniotic fluid, maternal serum, and umbilical cord blood of
singleton male and female fetuses, significant differences were observed in the concentrations of
testosterone, androstenedione (A4), and estradiol (201). Specifically, amniotic fluid concentrations of
testosterone and A4 were approximately twice as high in male fetuses, whereas estradiol concentra-
tions were slightly, but significantly, higher in female fetuses. Yet, interestingly, there were no differ-
ences for any of the hormones in maternal serum, similar to findings in mice that litters with a high
proportion of males or females did not impact testosterone, estradiol, or progesterone serum levels
in mothers (180). In umbilical cord serum, concentrations of A4 and estradiol were higher in males
compared with females (201), although it must be noted that these samples were collected at parturi-
tion, long after the fetal period of sexual differentiation of the reproductive organs.

Several studies have specifically compared steroid hormone levels in maternal and umbilical cord
blood samples collected from same-sex and opposite-sex twins. Male twins, whether their co-twin
was a male or a female, had higher blood concentrations of progesterone and testosterone compared
with female twins (202). Furthermore, for both sexes, dizygotic twins had higher levels of these hor-
mones, as well as estradiol, compared with monozygotic twins. Fetal sex had no effect on maternal
concentrations of testosterone, progesterone, or estrogen, suggesting that any differences observed
in fetal samples are due to contributions from the fetuses' own endacrine systems and the placental
tissue (203). Yet an additional study conducted in women carrying multiple fetuses (more than three)
indicates that both estradiol and progesterone concentrations in maternal plasma increase with the
number of fetuses, and when fetal reduction occurs, these hormone levels remain elevated (204).

It has been proposed that low-dose effects seen in different intrauterine positions in litter-bearing
animals could be an evolutionary adaptation, whereby the genotypes of the fetuses are relatively sim-
ilar but a range of phenotypes can be produced via differential hormone exposures (136, 168). For
example, female mice positioned between two females are more docile and thus have better repro-
ductive success when resources are plentiful, but females positioned between two males are more
aggressive and therefore are more successful breeders under stressful conditions (161, 171,175).In
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this way, a mother produces offspring with variable responses to environmental conditions, increas-
ing the chances that her own genetic material will continue to be passed on. Yet although there is evi-
dence to suggest that a variable intrauterine environment is essential for normal development (171),
intrauterine positional effects appear to have little effect on offspring phenotypes in inbred rodent
strains (168, 205). This result may be related to the link between genetic diversity and hormone sen-
sitivity (206, 207), suggesting that outbred strains are the most appropriate for studying endocrine
endpoints and are also most similar to the effects of low doses of hormones on human fetuses.

Finally, it has been proposed that similar mechanisms are used by the developing fetus in response to
natural hormones via intrauterine position and EDCs with hormonal activity (136). To this end, sev-
eral studies have examined the effects of both exposure to an EDC and intrauterine position or have
considered the effect of intrauterine position on the response of animals to these chemicals (174,
176,181, 208, 209). For example, one study found that intrauterine position affected the morphology
of the fetal mammary gland, yet position-specific differences were obliterated by BPA exposure (176).
Additional studies suggest that prostate morphology is disrupted by 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) exposure in males positioned between two females, but this chemical does not affect
prostate morphology in males positioned between two males (181). Finally, male rodents positioned
between two males have higher glucose intolerance than males positioned between two females, yet
when these males are given a diet high in phytoestrogens, glucose tolerance is dramatically improved
in the males positioned between two males, whereas their siblings positioned between two females
do not benefit (209). What is clear from these studies is that low doses of natural hormones are ca-
pable of altering organ morphology, physiology, and reproductive development, similar to the effects
of EDCs.

It has been suggested that the endocrine system allows for homeostatic control and that the aim of
the endocrine system is to “maintain normal functions and development in the face of a constantly

changing environment” (210). Yet studies from intrauterine position, together with studies of EDCs
(see Sections I1.C-F), clearly indicate that the fetal endocrine system cannot maintain a so-called ho-
meostasis and is instead permanently affected by exposures to low doses of hormones.

II. Demonstrating Low-Dose Effects Using a WoE Approach

A. Use of a WoE approach in low-dose EDC studies

In 2001, the NTP acknowledged that there was evidence to support low-dose effects of DES, genis-
tein, methoxychlor, and nonylphenol (2). Specifically, the NTP expert panel found that there was suffi-
cient evidence for low-dose effects of DES on prostate size; genistein on brain sexual dimorphisms,
male mammary gland development, and immune responses; methoxychlor on the immune system;
and nonylphenol on brain sexual dimorphisms, thymus weight, estrous cyclicity, and immune re-
sponses. Using the NTP's definitions of low dose (ie. effects occurring in the range of typical human
exposures or occurring at doses lower than those typically used in standard testing protocols), we
propose that most if not all EDCs are likely to have low-dose effects. Yet an important caveat of that
statement is that low-dose effects are expected for particular endpoints depending on the endocrine
activity of the EDC, and not for any/all endocrine-related endpoints. For example, if a chemical blocks
the synthesis of a hormone, blood levels of the hormone are expected to decline, and the down-
stream effects should then be predicted from what is known about the health effects of low hormone
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levels. In contrast, if a chemical binds a hormone receptor, the effects are expected to be very com-
plex and to be both tissue specific and dose specific. Finally, most EDCs interact with multiple hor-
mone pathways, or even multiple hormone receptors, making the expected effects even more com-
plex and context specific (211~213).

Table 3 summarizes a limited selection of chemicals that have evidence for low-dose effects, with a fo-
cus on in vivo animal studies. As seen by the results presented in this table, low-dose effects have
been observed in chemicals from a number of classes with a wide range of uses including natural and
synthetic hormones, insecticides, fungicides, herbicides, plastics, UV protection, and other industrial
processes. Furthermore, low-dose effects have been observed in chemicals that target a number of
endocrine endpoints including many that act as estrogens and antiandrogens as well as others that
affect the metabolism, secretion, or synthesis of a number of hormones. It is also clear from this table
that the cutoff for low-dose effects is not only chemical specific but also can be effect dependent. And
finally, although this table is by no means comprehensive for all EDCs or even the low-dose effects of
any particular chemical, the affected endpoints cover a large range of endocrine targets.
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Table 3.

EDCs with reported low-dose effects in animals (or humans, where stated)

Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

Chemical Use EDC action Low-dose cutoff Affected endpoint Refs.

Aroclor 1221 (PCB  Coolants, Mimics 0.1-1 mg/kg Brain sexual dimorphisms 683,

mixture) lubricants, estrogens, (produces 684

paints, antiestrogenic  human blood
plastics activity, etc. levels)

Atrazine Herbicide Increases 200 pg/liter Male sexual See
aromatase (334, 335) differentiation/development this
expression review

BPA Plastics, Binds ER, mER, 400 ug/kg-d Prostate, mammary gland, See

thermal ERRy, PPARy, (produces brain development and this
papers, epoxy may weakly human blood behavior, reproduction, review
resins bind TH concenirations) immune system,
receptor and metabolism
AR
Chlordane Insecticide Binds ER 100 ng/g Sexually dimorphic behavior 685
(produces
human blood
levels}
Chlorothalonil Fungicide, Aromatase 164 pg/liter Corticosterone levels 686
wood inhibitor (environmental (amphibians)
protectant concentrations,
EPA)
Chlorpyrifos Insecticide Antiandrogenic 1mg/kg-d Acetylcholine receptor 687
(EPA) binding (brain)
DDT Insecticide Binds ER 0.05 mg/kg Neurobehavior 688
(EPA)
DES Synthetic Binds ER 0.3-1.3mg/kg- Prostate weight 689
hormone d (dose typically
administered to
pregnant
women)
Dioxin (TCDD) Industrial Binds AhR 1pg/kg- d(397) Spermatogenesis,immune  See
byproduct function and oxidative this
stress, tooth and bone review

EDC action indicates that for some chemicals, an effect is observed (i.e. estrogenic, andragenic), but for many EDCs,
complete details of receptor binding are unavailable or incomplete. Low-dose cutoff means the lowest dose tested in

traditional toxicology studies, or doses in the range of human exposure, depending on the data available. Affected end-
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point means at least one example of an endpoint that shows significant effects below the low-dose cutoff dose. This
listis not comprehensive, and the lack of an endpoint on this table does not suggest that low doses do or do not affect
any other endpoints. AR, Androgen receptor; EFSA, European Food Safety Authority; ERR, estrogen related receptor;
PCB, polychlorinated biphenyl; PPARy, peroxisome proliferator-activated receptor-y; PRGR, progesterone receptor;
RXR, retinoid X receptor; SCCP, Scientific Committee on Consumer Products; TH, thyroid hormone; TRE, thyroid re-
sponse element; WHO, World Health Organization,

Several EDCs have been well studied, and the number of publications focusing on low-dose effects on
a particular developmental endpoint is high; however, other chemicals are less well studied with
fewer studies pointing to definitive low-dose effects on a given endpoint. In fact, there are a signifi-
cant number of EDCs for which high-dose toxicology testing has been performed and the no ob-
served adverse effect level (NOAEL) has been derived, but no animal studies in the low-dose range
have been conducted, and several hundred additional EDCs where no significant high- or low-dose
testing has been performed (see Table 4 for examples). Balancing the large amount of data collected
from some well-studied chemicals like BPA and atrazine with the relative paucity of data about other
chemicals is a difficult task.
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Table 4.

Select examples of EDCs whose potential low-dose effects on animals remain to be studied
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Low-dose
Chemical Use EDCaction cutoff
Antiseptics and
preservatives
Butyl paraben Preservative (cosmetics) Estrogenic, antiandrogenic 2mg/kg-d
(EPA)

Propyl paraben Antimicrobial preservative Estrogenic activity LOAEL 10
found in pharmaceuticals, mg/kg - d, NOEL
foods, cosmetics, and 6.5mg/kg-d
shampoos (Europa)

Cosmetics and personal
care products

2,4- UV absorber in polymers, Estrogenic activity Not identified
Dihydroxybenzophenone  sunscreen agent

3-Benzylidene UV blocker used in personal  Estrogenic activity 0.07 mg/kg - d
camphor care products 710

4,4'- UV light stabilizer used in Estrogenic activity Not identified
Dihydroxybenzophenone  plastics, cosmetics,

adhesives, and optical fiber

Benzophenone-2  Used in personal care Estrogenic activity, changes in NOEL 10-333
products such as aftershave Ty, T3, and TSH levels, mg/kg - d (711)
and fragrances alterations in cholesterol profile

Benzophenone-3 UV filter Estrogenic, PPARYy activator 200 mg/kg-d

(Europa)
Multiple use (other)

Melamine Flame-retardant additiveand  Affects voltage-gated K* and Na* 63.0 mg/kg- d
rust remover; used to make channels and Ca** (FDA)
laminate, textile, and paper concentrations in hippocampal
resins; metabolite of neurons
cyromazine

Resorcinol Used in the manufacturing of  Alters T4 and TSH levels 80.00 mg/kg - d
cosmetics, dyes, flame (Europa)

retardants, hair dye
formulations,

pharmaceuticals, skin

PPARy, peroxisome proliferator-activated receptor-y; PR, progesterone receptor.
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“These chemicals were identified in the 1990s as part of the dirty dozen, 12 chemicals that were acknowledged to be
the worst chemical offenders because of their persistence in the environment, their ability to accumulate through the
food chain, and concerns about adverse effects of exposures to wildlife and humans. These chemicals were banned by
the Stockholm convention and slated for virtual elimination, Yet there is still very little known about the low-dose
effects of these chemicals, likely in the range of past and current human and/or wildlife exposures.

WoE approaches have been used in a large number of fields to determine whether the strength of
many publications viewed as a whole can provide stronger conclusions than any single study exam-
ined alone. Although the term ‘weight of evidence’ is used in public policy and the scientific literature,
there is surprisingly little consensus about what this term means or how to characterize the concept
(214). Historically, risk assessors have used qualitative approaches (i.e. professional judgment to rank
the value of different cases) and quantitative approaches (i.e. scoring methods to produce statistical
and mathematical determinations of chemical safety), but it has been argued that these methods lack
transparency and may produce findings that are unrepeatable from one risk assessor to another
(215, 216). Whatever the method used, when EDCs are being assessed, it is important to use the prin-
ciples of endocrinology to establish the criteria for a WoE approach. We do this in Section ILB, identi-
fying three key criteria for determining whether a study reporting no effect should be incorporated
into a WoE approach. It also should be noted that in epidemiology, the term ‘weight of evidence’ is
typically not used, but the concept is actuated by meta-analysis, formally and quantitatively combining
data across studies, including a plot of individual and pooled study findings and also a measure of
heterogeneity of findings between studies.

For some well-studied chemicals, there are large numbers of studies showing both significant effects,
and additional studies showing no effects, from low-dose exposures. In these cases, extensive work is
needed to deal with discordant data collected from various sources; studies showing no effect of low-
dose exposures must be balanced in some way with those studies that do show effects. As stated by
Basketter and colleagues (217), “it is unwise to make a definitive assessment from any single piece of
information as no individual assay or other assessment ... is 100% accurate on every occasion ... This
means that from time to time, one piece of conflicting data has to be set aside” WoE approaches in
EDC research have typically dealt with datasets that have some conflicting studies, and these conflicts
are even more difficult to sort out when studies have attempted to directly replicate published find-
ings of adverse effects (see for example Refs. 218-221).

Most previously published WoE analyses have examined chemicals broadly (asking questions such as,
“Does BPA produce consistent adverse effects on any endpoint?”) (see Ref. 222). This can lead to
problems including those encountered by the NTP expert panel, which found that there was some ev-
idence for low-dose effects of BPA on certain endpoints but mixed findings for other endpoints. For
example, the panel noted that some studies found low-dose effects of BPA on the prostate, but other
studies could not replicate these findings. In Section I.B, we address criteria that are needed to accept
those studies that are unable to detect low-dose effects of chemicals; these criteria were not used by
the NTP in 2001, but they are essential to address controversies of this sort and perform WoE analy-
ses using the best available data. In the sections that follow, we employed a WoE approach to examine
the evidence for low-dose effects of single chemicals on selected endpoints or tissues, also paying at-
tention to when in development the EDCs in question were administered.
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B. Refuting low-dose studies: criteria required for acceptance of studies that find no effect

Over the past decade, a variety of factors have been identified as features that influence the accep-
tance of low-dose studies (69, 71, 76, 77, 90, 205, 223, 224). In fact, the NTP low-dose panel itself
suggested that factors such as strain differences, diet, caging and housing conditions, and seasonal
variation can affect the ability to detect low-dose effects in controlled studies (2). In particular, three
factors have been identified; when studies are unable to detect low-dose effects, these factors must
be considered before coming to the conclusion that no such effects exist.

1. Negative controls confirm that the experimental system is free from contamination

Although all scientific experiments should include negative (untreated) controls, this treatment cate-
gory is particularly important for EDC research. When a study fails to detect low-dose effects, the ob-
served response in control animals should be compared with historical untreated controls; if the con-
trols deviate significantly from typical controls in other studies, it may indicate that these animals
were, in fact, treated or contaminated in some way or that the endpoint was not appropriately as-
sessed (77, 205, 225). For example, if an experiment was designed to measure the effect of a chemi-
cal on uterine weight, and the control uteri have weights that are significantly higher than is normally
observed in the same species and strain, these animals may have been inadvertently exposed to an
estrogen source, or the uteri may not have been dissected properly by the experimenters. In either
case, the study should be examined carefully and likely cannot be used to assess low-dose effects; of
course, untreated controls should be monitored constantly because genetic drift and changes in diet
and housing conditions can also influence these data, thus explaining changes from historical con-
trols. Importantly, several types of contamination have been identified in studies of EDCs including
the leaching of chemicals from caging or other environmental sources (226, 227), the use of pesti-
cide-contaminated control sites for wildlife studies and contaminated controls in laboratory studies
(76), and even the use of food that interferes with the effects of EDCs (224, 228). It is also important
to note that experiments must consider the solvent used in the administration of their test chemical,
and thus good negative controls should test for effects of the solvent itself. Using solvent negative
controls helps prevent false positives as well as the possibility that the vehicle could mask the effects
of the chemical being studied.

2. Positive controls indicate that the experimental system is capable of responding to low doses of a

chemical acting on the same pathway

Many studies do not include a positive control, either because of the size and cost of the experiment
when including an additional treatment or because an appropriate positive control has notbeen
identified for the endpoint being examined. If the experiment detects an effect of the chemical in
question, the exclusion of a positive control does not necessarily affect the interpretation of the re-
sults; instead, it can be appropriately concluded that the test chemical is significantly different from
unexposed (but similarly handled /treated) negative controls. However, if the study fails to detect low-
dose effects of a test chemical, no convincing conclusion can be made; in this case, a positive control
is required to demonstrate that the experimental system was capable of detecting such effects (71,

75,77, 205).
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Several issues must be considered when addressing whether the positive control confirms the sensi-
tivity of the assay. First, an appropriate chemical must be selected, and it must be administered via
the appropriate route, i.e. if the test chemical is administered orally, a positive control that is orally ac-
tive, such as ethinyl estradiol, should be used; if the test chemical is administered sc, a positive control
that is active via this route, such as 17p-estradiol, is most appropriate. The use of 17B-estradiol in
studies that use oral exposures is particularly inappropriate (see Ref. 229) for example) because this
hormone, like most natural steroids, has very low oral activity (77). Second, the positive control
chemical must be examined, and effective, at appropriately low doses. Thus, if the test chemical is 100
times less potent than the positive control, a dose of the positive control 100 times lower than the
test compound must produce effects (69, 71, 205). For example, studies that report effects of ethinyl
estradiol only at doses that are hundreds of times higher than the dose that is effective in contracep-
tives (230) are not capable of detecting low-dose effects of test chemicals. Without appropriate and
concurrent positive and negative controls, studies that fail to detect low-dose effects of test chemicals
should be rejected.

3. Species and animal strains that are responsive to EDCs must be used

The NTP expert panel specifically noted that “because of clear species and strain differences in sensi-
tivity, animal-model selection should be based on responsiveness to endocrine-active agents of con-
cern (i.e. responsive to positive controls), not on convenience and familiarity” (2). An analysis of the
BPA literature clearly showed that many of the studies that failed to detect effects of low doses used
the Charles River Sprague-Dawley rat (75); this strain was specifically bred to have large litters (231),
and many generations of inbreeding have rendered the animal relatively insensitive to estrogens
(205). The NTP expert panel noted the lack of effects of BPA on Sprague-Dawley rats and concluded
that there were clear differences in strain sensitivity to this chemical (2). Importantly, this may not be
true for Sprague-Dawley rats that originate from other vendors, indicating that animal origin can also
influence EDC testing.

Many studies in mice (138, 206, 207, 232-234) and rats (232, 235-239) have described differences
displayed between two (or more) animal strains to a natural hormone or EDC. Often these differ-
ences can be traced to whether a strain is inbred or outbred. Genetically diverse strains are generally
found to be more sensitive to estrogens (206). Importantly, well-controlled studies demonstrate that
strain differences in response to estrogen treatment may be organ dependent or may even differ be-
tween levels of tissue organization within the same organ. For example, the Sprague-Dawley rat is
more sensitive to ethinyl estradiol than other strains when measured by uterine wet weight. However,
when other endpoints were measured, i.e. height of cells in the uterine epithelium, the Sprague-
Dawley rat was indistinguishable from the DA/Han rat; instead, the Wistar rat had the most height-
ened response (237). Additionally, there are data to indicate that strain differences for one estrogen
may not be applicable for all estrogenic chemicals. In comparing the responses of DA/Han, Sprague-
Dawley, and Wistar rats to other xenoestrogens, additional differences were observed including a
greater increase in uterine wet weight of DA/Han and Sprague-Dawley rats but not Wistar rats after
exposure to 200 mg/kg BPA; increased uterine epithelium thickness was observed in Wistar and
Sprague-Dawley rats but not DA/Han rats after exposure to 200 mg/kg octylphenol (237). Attempts
have been made, at times successfully, to map the differences in strain response to genetic loci (240).
However, it appears that strains with differences in response that manifest in some organs do not
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have divergent responses in other organs, a phenomenon that is not explained by genetic differences
alone. For these reasons, the NTP's recommendation that scientists use animals that are proven re-
sponsive to EDCs (2) must be observed.

4. Additional factors?

Additional factors have also been identified as influential in the ability (or inability) to detect low-
dose effects in EDC studies. Although these factors must be considered when interpreting studies and
using a WoE approach, some issues that were previously identified as essential factors in the design
of studies (i.e. route of administration) have more recently been disputed (241).

The first factor is the use of good laboratory practices (GLP) in the collection of data. When assessing
the EDC literature for risk assessment purposes, the FDA and European Food Safety Authority
(EFSA) have given special prominence to studies that complied with GLP guidelines, essentially giving
scientific priority to industry-funded studies because that group typically conducts GLP guideline
studies (33, 242). Because GLP guidelines are designed only to control data collection, standards for
animal care, equipment, and facility maintenance, and they do not ensure that studies were designed
properly with the appropriate controls, it has been argued that the use of GLP methods is not appro-
priate or required for EDC studies (69).

GLP studies are typically large, with dozens of animals studied for each endpoint and at each time
point. Thus, it has been concluded that these studies are better simply because they are larger. Yet
small studies designed with the use of power analysis, statistical tools that allow researchers to deter-
mine a priori the number of animals needed to determine significant differences based on effect size,
are equally capable of detecting effects while reducing the number of animals used (69). GLP studies
also typically (but not necessarily) rely upon standardized assays, which are not generally considered
contemporary tools and are often shown to be incapable of detecting adverse effects on endpoints
that employ modern tools from molecular genetics and related disciplines. Furthermore, some fields
of EDC research have no GLP studies (243). Finally, there is no published evaluation of whether stud-
ies performed under GLP are more capable of providing accurate results. The priority given to GLP
studies therefore does not appear to have been justified based on any comparative analysis. Thus, as
long as studies include appropriate measures of quality assurance, they need not be performed un-
der GLP standards to provide reliable and valuable information, and many GLP studies are inade-
quate to assess important and relevant endpoints. Instead, the most valuable studies consider the fac-
tors presented above, along with appropriate dose selections and choice of endpoint.

The second factor worth considering is the source of funding for studies. In several fields, significant
controversy has been produced based on the results obtained from independent scientists compared
with resuilts obtained from scientists affiliated with the chemical industry (75, 76). Funding source
per se should not dictate the outcome of a research study, but that does not mean that researchers
are not subject to underlying biases. In our own WoE analyses, presented in Sections I1.C-G, we do not
discount studies merely because they were conducted with industry funds, nor do we lend higher
weight to studies conducted in independent or government laboratories; if a study, regardless of
funding, finds no effect of a chemical, it is given weight only if the three criteria described in Sections
11.B.1-3 (successful and appropriate negative and positive controls and appropriate choice of animal
model) were met.
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To perform a WoE evaluation, we identified some basic information about the chemical in question,
the dose that would be considered a low-dose cutoff, and the studies in support of and against low-
dose effects. We then considered whether the majority of studies found effects of low doses of a
chemical on a single endpoint in question, If studies did not find low-dose effects, we considered
whether they adhered to the criteria discussed above for proper design of an EDC low-dose study. In
particular, we considered whether appropriate animal strains as well as positive and negative con-
trols were used. With regard to animal strain, as discussed briefly in Section II.B.3, there is variability
between animal strains that can significantly influence the ability to detect effects of EDCs; using in-
sensitive strains to produce negative data cannot refute positive data in a sensitive strain. In several
cases, it was easy to conclude that there was a strong case for low-dose effects because there were
no studies finding no effects at low doses or because all of the negative studies were inappropriately
designed. For other chemicals, a significant number of studies found effects on the endpoint being
considered, but other (adequately designed) studies refuted those findings. Under those circum-
stances, we determined whether the findings of harmful effects came from multiple laboratories;
when they did, we cautiously concluded that there was evidence for low-dose effects. Below (Sections
11.C-G), we present five examples where a significant number of studies were available examining
low-dose effects of an EDC on a single particular endpoint.

C. BPA and the prostate: contested effects at low doses?

As discussed briefly above, BPA is one of the best-studied EDCs, with more than 200 published ani-
mal studies, many of which focused on low doses (29, 31). The effects of this chemical on wildlife
species have also been described in detail (28). BPA is found in a myriad of consumer products, and
it leaches from these items under normal conditions of use (4). It has also been regularly detected in
air, water, and dust samples. The majority of individuals in industrialized countries have BPA metabo-
lites in their urine, and trends indicate increasing exposures in developing nations like China (87,
244). Although it was long suspected that most human exposures originate from BPA contamination
of food and beverages, a study comparing the excretion of BPA metabolites with the length of time
spent fasting suggests that there are also likely to be significant exposures from sources other than
food and beverages (245). BPA has recently been shown to be used in large quantities in thermal and
recycled papers and can enter the skin easily via dermal absorption (246-248). Thus, despite the
large amount of information available on BPA sources, our understanding of how these sources con-
tribute to total human exposures remains poor; these studies also point to significant gaps in current
knowledge about BPA metabolism in humans (243).

BPA binds to the nuclear and membrane ER, and thus most of the effects of this chemical have been
attributed to its estrogenic activity (27). However, there is evidence that it can activate a number of
additional pathways, including thyroid hormone receptor, androgen receptor, as well as peroxisome
proliferator-activated receptor-y signaling pathways (249-252). The cutoff for a low dose has been
set at several different concentrations depending on which studies and definitions are used (see
Table 1). The EPA calculated a reference dose for BPA of 50 pg/kg - d based on a LOAEL of 50 mg/kg
- d (38). More recent pharmacokinetic scaling experiments have estimated that exposures to approxi-
mately 400 pg/kg - d produce blood concentrations of unconjugated BPA in the range of human
blood concentrations (4). Thus, for the two WoE analyses of the BPA literature we conducted, doses
of 400 pg/kg - d or lower were considered low dose; pharmacokinetic studies from nonhuman pri-
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mates support the appropriateness of this dose for approximating human exposure levels (253).
Furthermore, because this dose is below the toxicological LOAEL, it is a conservative cutoff for low-
dose studies (see Refs. 3 and 38 and Table 1).

One of the most well studied and hotly debated examples of a low-dose effect comes from the BPA lit-
erature; regulatory agencies and scientists have addressed several times whether low doses of BPA
during fetal and perinatal development affect the rodent prostate (118, 205, 254, 255). In 1997, the
first study on BPA and the prostate determined that fetal exposure to low doses (2 and 20 pg/kg - d
administered orally to pregnant mice) increased the weight of the adult prostate compared with un-
exposed male offspring (256). Since that time, several additional studies have verified that prostate
weight is affected by fetal exposure to similar low doses (257-259). Studies have also shown that low
doses of BPA affect androgen receptor binding activity in the prostate (257), tissue organization, and
cytokeratin expression in the gland (260-262) as well as the volume of the prostate and the number
and size of dorsolateral prostate ducts (208). Several recent studies have also examined whether low
doses of BPA (10 pg/kg - d) influence the incidence of adult-onset prostatic intraepithelial neoplasia
(PIN) lesions. Perinatal BPA exposure, whether administered orally or sc to pups, increases the inci-
dence of PIN lesions in response to a mixture of testosterone and estradiol in adulthood (139, 141,
263); this hormonal cocktail was designed to mimic the endocrine changes associated with aging in
men that also typically accompany the onset of prostate cancer. In addition to the effects of BPA on
PIN lesions, these low doses also produced permanent alterations in the epigenome of exposed
males, with prostates displaying completely unmethylated sequences in genes that are hypermethy-
lated in unexposed controls (140, 263). In examining these studies, although the same effects of BPA
on the prostate were not observed in all studies, there is an obvious trend demonstrating that low
doses of BPA during early development significantly affect several aspects of prostate development.

Since the initial report showing effects of low doses on the prostate, approximately nine studies, in-
cluding several designed specifically to replicate the original positive study, have shown no effects of
low doses on the prostate (264-272); every one of these studies examined the prostate weight, and
Ichihara et al. (264) also examined the effects of BPA on PIN lesions (without hormonal treatment)
and the response of the prostate to a chemical carcinogen. Three of these studies failed to include a
positive control of any kind (264, 268, 270); three studies used DES as a positive control but found
no effect from exposure to this potent xenoestrogen (265-267) (Le. the positive control failed); an-
other study used 17p-estradiol as a positive control, inappropriately administered orally, and found
no effects of this hormone on the prostate (271); and two studies used an estrogenic positive control
(ethinyl estradiol) and found effects from its exposure, but only at inappropriately high doses (269,
272). These two studies clearly showed that the positive control dose was too high, because rather
than increase the weight of the prostate (as seen after low doses of estrogens in other studies), the
positive control decreased the weight of the adult prostate (269, 272).

Although this topic was once considered controversial, using a WoE approach, it is clear that there is
strong evidence in support of low-dose effects of BPA on the development of the prostate. The evi-
dence clearly shows that several endpoints, including prostate weight, were affected in similar ways
in multiple studies from several different labs at doses below 400 pug/kg - d; most effects were seen at
doses below 50 pug/kg - d. Furthermore, PIN lesions were reported after neonatal exposure to 10
ug/kg - d with hormonal treatment in adulthood. No appropriately conducted studies contest this evi-
dence. Therefore, the WoE analysis demonstrates that low doses of BPA significantly alter develop-
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ment of the rodent prostate. The NTP's review of the BPA literature in 2008 indicated that this agency
agrees that there is now significant evidence that low-dose BPA adversely affects development of the
prostate (273).

D. BPA and the mammary gland: undisputed evidence for low-dose effects

The mammary gland is a conspicuous choice to examine the effects of estrogenic compounds because
this organ depends on estrogen for proper development at several critical periods in life (274). The
fetal gland expresses ER in the mesenchymal compartment, and just before birth, the epithelium be-
comes ER positive as well (275). At puberty, estrogen is responsible for ductal elongation and overall
development of the gland, allowing the epithelium to fill the stromal compartment in preparation for
pregnancy and lactation. Although BPA is an example of a chemical that has been classified as a weak
estrogen because it binds with a much lower affinity to ERa compared with 17B-estradiol, even weak

estrogens are known to affect the development of the mammary gland during early development
(276).

In the first study to examine the effects of BPA on the mammary gland, prepubertal rats were ex-
posed to relatively high doses (100 pg/kg - d or 54 mg/kg - d) for 11 d. After even this short expo-
sure, mammary gland architecture was affected in both dose groups, with increased numbers of ep-
ithelial structures and, in particular, structures that suggest advanced development (277). BPA expo-
sure also altered proliferation rates of mammary epithelium and cell cycle kinetics, with an increased
number of cells in S-phase and a decreased number of cells in G1. Although relatively high doses of
BPA were examined, this initial study indicated that the prepubertal and pubertal gland could be sen-
sitive to BPA.

Many additional studies have examined another critical period, the fetal and neonatal périods, which
are sensitive to environmental estrogens (78, 276, 278). Mice exposed prenatally to low doses of BPA
via maternal treatment (0.25 pg/kg - d) displayed altered development of both the stromal and ep-
ithelial compartments at embryonic d 18, suggesting that exposures affect tissue organization during
the period of exposure (176). In addition, similar low doses produced alterations in tissue organiza-
tion observed in puberty and throughout adulthood, long after exposures ended, and even induced
pregnancy-like phenotypes in virgin females (137, 279-282). Female mice exposed to BPA in utero
displayed heightened responses to estradiol at puberty, with altered morphology of their glands com-
pared with animals exposed to vehicle in utero (138). Another study demonstrated that perinatal BPA
exposure altered the mammary gland's response to progesterone (283). Remarkably, all of these ef-
fects were observed after maternal exposures to low doses (0.025-250 pg/kg), suggesting that the
gland is extremely sensitive to xenoestrogen exposures. These studies are in contrast to one that ex-
amined the effects of higher doses (0.5 and 10 mg/kg - d) when BPA was administered for 4 d to the
dam, which reported advanced development of BPA-exposed glands before puberty but no effects in
adulthood (284).

Adult exposure to BPA is only now being examined in the mouse mammary gland model. A recent
study examined the effects of BPA on mice with mutations in the BRCA1 gene. This study reported
that 4 wks of exposure to a low dose of BPA altered the tissue organization of the mammary gland in
ways that are similar to the effects observed after perinatal exposure (285). This study focused on al-
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tered development of the gland during exposure; additional studies are needed to determine
whether these effects are permanent or whether normal mammary morphology could be achieved
by cessation of BPA exposure.

Another obvious endpoint is the effect of BPA exposure on mammary cancer incidence. Several stud-
ies indicate that exposure to BPA in utero produces preneoplastic (281, 286, 287) and neoplastic le-
sions (286) in the gland in the absence of any other treatment. Additionally, other studies show that
females exposed to BPA during the perinatal period are more sensitive to mammary carcinogens, de-
creasing tumor latency and increasing tumor incidence (287-290). These studies are also supported
by subsequent studies examining gene and protein expression, which show that low-dose BPA specif-
ically up-regulates expression of genes related to immune function, cell proliferation, cytoskeletal
function, and estrogen signaling and down-regulates apoptotic genes (282, 288, 289, 291).

Postnatal BPA exposures also influence mammary cancer incidence; animals exposed lactationally to
BPA from postnatal d 2 until weaning displayed decreased tumor latency and increased tumor multi-
plicity after treatment with DMBA [7,12-dimethylbenz(a)anthracene], a carcinogen (292). This study
suggested that BPA exposure led to increased cell proliferation and decreased apoptosis in the gland
and shifted the period where the gland is most susceptible to mammary carcinogens, a result that has
important implications for human breast cancer. Finally, an additional study examined the effects of
adult BPA exposure on mammary cancer; this study demonstrated that low doses of BPA accelerate
the appearance of mammary tumors in a tumor-prone mouse strain (293). Interestingly, high doses
did not have this effect; thus, this study is also an excellent example of a NMDRC.

Two studies of BPA and the mammary gland seem to contradict this body of literature, but both ex-
amined extremely high doses. In the first study, Nikaido et al. (294) exposed female mice to 10 mg/kg
BPA from postnatal d 15-18. Mammary glands from these animals were examined at 4, 8, and 24 wk
of age, and no differences were observed in the exposed animals relative to controls. Although the
lack of effects reported in this study could be due to the high dose employed, they could also be re-
lated to the relatively short exposure period during the preweaning phase. In the second study, Yin
and colleagues (295) examined the effects of BPA during the first few days after birth (0.1 or 10 mg
BPA, equivalent to approximately 10 and 1000 mg/kg) on the incidence of mammary tumors after ex-
posure to a mammary carcinogen at puberty. Similar to the study described above, this one also ex-
amined the effects of BPA after a relatively short period of exposure (only three injections adminis-
tered between postnatal d 2 and 6). Although the study showed that BPA affected tissue organization,
there was no change in the incidence of tumors in BPA-exposed females. Because both of these stud-
ies examined both high doses and relatively short periods of exposure, it is difficult to compare them
directly to the studies finding effects of BPA on the mammary gland after longer exposures to lower
doses; at the very least, they cannot refute studies suggesting that BPA alters development of this
gland.

In summary, the WoE clearly shows that low-dose BPA exposure affects development of the mam-
mary gland, mammary histogenesis, gene and protein expression in the gland, and the development
of mammary cancers. In fact, this example of low-dose effects produced remarkably similar effects
across more than a dozen studies conducted in several different labs. These results are also consis-
tent with the effects of low-dose BPA exposure on mammary epithelial cells in culture (reviewed in
Ref. 30). Although epidemiology studies examining the influence of BPA on breast cancer rates have
proven to be inconclusive at best (296), to replicate the animal studies discussed above, epidemiolo-
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gists must collect information about prenatal and neonatal exposures and relate them to adult breast
cancer incidence. These types of studies would take decades to conduct (67) and should take into
consideration the effects of other estrogens, because their effects can be additive or even synergistic
(143, 144, 297).

Although our analyses of BPA have focused on its effects on the mammary gland and prostate (see
Sections I.C-D), it is worth noting that several other endpoints have strong data to support the hy-
pothesis that BPA has low-dose effects. In a recent review using similar WoE approaches, Hunt and
colleagues (298) focused on those studies that examined the effects of BPA on the oocyte, specifically
scrutinizing studies that reported effects, or no effects, on meiotic aneuploidy and other alterations in
the intracellular organization and chromosome abnormalities. Similar to what has been observed
with the prostate and mammary gland, the effects observed in the oocyte are variable from study to
study, but overall consistent, and suggest that BPA exposure produces defects in these cells.

A large number of studies have also focused on the effects of BPA on the brain and behavior, with the
most significant effects on sexually dimorphic regions of the brain and behaviors (299-307). Other
affected behaviors include social behaviors, learning and anxiety, and maternal-neonate interactions
(reviewed in Refs. 29 and 308). The NTP expert panel statement concluded that there were significant
trends in these behavioral data and wrote that there was some concern that BPA could have similar
effects in humans (273). Low-dose effects have also been reported for BPA in the female reproduc-
tive tract (309, 310), immune system (311, 312), maintenance of body weight and metabolism (313,
314), fertility (315-317), and the male reproductive tract (259, 318) (see Refs. 29 and 319 for com-
prehensive reviews).

E. Another controversial low-dose example: atrazine and amphibian sexual development

Atrazine is an herbicide that is applied in large volumes to crops, and there is concern that agricul-
tural runoff of this chemical can affect nontarget animal species, especially amphibians that live and
reproduce in small ponds and streams where significant amounts of atrazine have been regularly
measured (320-322). It is the most commonly detected pesticide in ground and drinking water.
Atrazine induces aromatase expression in cells and animals after exposure (323); this ultimately
causes an increase in the conversion of testosterone to estrogen (324, 325). This effect has been re-
ported in all vertebrate classes examined: fish, amphibians, reptiles, birds, and mammals, including
human cell lines (see Ref. 326 for review). Another well-documented effect of atrazine is that it de-
creases androgen synthesis and activity, again, in every vertebrate class examined (326). In addition,
endocrine-disrupting effects of atrazine occur through a number of other mechanisms, including
antiestrogenic activity (327), altered prolactin release (328}, and increased glucocorticoid release
from the adrenal glands (329, 330), among others (327).

Because of atrazine's indirect effect on estrogen levels, one relevant endpoint that has been given at-
tention is the effect of this chemical on gonad differentiation in various amphibian species. The early
gonad is bipotential, and in mammals, the expression of genes on the Y-chromosome is needed to
masculinize the undifferentiated gonad; when this does not occur, the gonad develops into ovarian
tissue. In Xenopus laevis frogs (and some other animals like birds), the opposite is true: females are
heterogametic (i.e. ZW-chromosomes) and males have two of the same chromosomes (i.e. ZZ). In X.
laevis, the W-chromosome is the dominant one, containing a gene, DM-W, which induces aromatase
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expression (331). Thus, having a W-chromosome is needed to produce estrogen; without the conver-
sion of testosterone to estrogen, the frog develops as a male (332). Changes in sex ratio and gonadal
morphology are therefore good indicators that an estrogen, or a chemical that up-regulates aro-
matase and indirectly increases estrogen levels, is present (76).

Determining a low-dose cutoff for atrazine is not a simple task. Although the safe limit of 3 pg/liter in
drinking water was set by the EPA, actual levels in the environment often exceed this concentration
(333), and levels in ponds and streams can reach 100 pg/liter (322) or more. In traditional toxicol-
ogy studies examining several amphibian species, the LOAEL was set at 1.1 mg/liter, and the no ob-
served effect level (NOEL) was 200 pg/liter (334, 335). Thus, using the definitions of low dose estab-
lished by the NTP (2), we consider any treatment at or below 200 pg/liter to be a low dose.

In 2002, one of the first published studies to connect atrazine exposures to altered gonadal morphol-
ogy examined X. laevis frogs exposed to 0.01-200 pg/liter throughout larval development (336). All
doses from 0.1-200 pg/liter produced gonadal malformations including the presence of multiple go-
nads and hermaphroditism. Several other reports showed similar effects of low doses on gonadal
phenotypes including studies that report the production of hermaphrodites and intersex frogs, males
with ovotestes, and males with testicular oocytes (337-343). Additional studies showed that low-dose
atrazine exposure (0.1-200 pg/liter in the water) during sexual differentiation caused testicular dys-
genesis, testicular resorption, and testicular aplasia in male frogs (343, 344), and others indicated ef-
fects on sex ratios (339, 342, 345, 346). Importantly, these effects were not all observed at the same
atrazine concentration, and the studies were conducted in several different species, with some re-
porting effects at low doses but no effects at higher doses (341) and others reporting effects in some
but not all species (339). Examining these studies as a whole, there is clearly a pattern of effects that
are reproducible from study to study, and they collectively support the hypothesis that atrazine dis-
rupts sex hormone concentrations.

To date, five peer-reviewed studies have reported no effects of atrazine on sex ratios, gonadal mor-
phology, the incidence of testicular abnormalities or testicular oocytes, gonad size, or the incidence of
intersex phenotypes (347-351). Little can be ascertained from these negative studies, however, be-
cause four did not include any positive control, suggesting that the frogs used in those studies may
have been incapable of responding to atrazine or any other hormonal treatment (347-350).
Additionally, one of those studies reported testicular oocytes in the control frogs, suggesting either
that the negative control population was contaminated with atrazine (or another EDC or hormone),
or that an inappropriate strain of X. laevis was selected for the experiments (347). Only one study re-
mains that did not find any effects of atrazine; this study used an appropriate positive control (17-
estradiol) and found effects of that hormone on sex ratios and the incidence of intersex gonads
(351). An EPA expert panel noted, however, that this study used a strain of X. laevis that was obtained
from a new, unexamined population of frogs from Chile and suggested that this strain may be insensi-
tive to environmental chemicals. Furthermore, the panel called for additional analysis of the data in
this study, including the statistical approaches; they suggested that an independent laboratory should
evaluate the histopathological results; and they requested that atrazine metabolites be measured
(352). The panel also proposed that these experiments should be repeated with an established X. lae-
vis strain. Taking together the results of those studies that found effects of atrazine on sexual differ-
entiation, and this one negative study, the WoE for the case of low-dose atrazine on sexual differentia-
tion is clearly in support of adverse effects of this chemical.
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Just as epidemiological studies have found links between EDCs and human diseases, ecological field
studies have examined whether exposure to atrazine in natural environments affects the develop-
ment of wild amphibians (343, 353-358). These studies have many of the same constraints as those
observed in epidemiology: a paucity of data on early life exposures (including exposure levels of con-
trols), limitations on the total number of EDCs that can be measured in environmental and biological
samples, and a lack of causative relationships that can be established between exposures and effects.
For these reasons, studies that found relationships between atrazine exposure (or concentrations in
environmental samples) and effects on one or more aspect of sexual differentiation (343, 353-355)
are considered weak, but significant, evidence for low-dose effects. The presence of several studies
suggesting a relationship between low-dose exposure to atrazine in the wild and altered sexual dif-
ferentiation indicates a plausible causal relationship. Because the ecological and laboratory data
show similar effects of atrazine on gonadal development, this strengthens the conclusions of our
WoE that low doses of atrazine cause harm to amphibians.

Feminization of males after atrazine exposure is not restricted to amphibians; exposure of zebrafish
to low doses increased the ratio of female to male fish and increased expression of aromatase (359).
Close to a dozen additional studies also report that environmentally relevant doses of atrazine can
up-regulate aromatase, decrease testosterone, and/or increase estrogen levels in a large number of
species (reviewed in Ref. 119), suggesting that low-dose effects of atrazine may be more widespread
than their effects on the gonads of amphibians. Other studies indicate that low-dose atrazine affects
the immune system and stress responses of salamanders (360-362), survivorship patterns of several
frog species (363), and thyroid hormone and plasma ion concentrations in salmon (364).

An important factor to consider when examining the effects of atrazine on different animal models is
the difficulty in identifying an appropriate low, environmentally relevant dose for all species. Aquatic
animals can be housed in water containing levels of atrazine found in wild habitats, yet no toxicoki-
netic studies are available to determine what administered dose produces the levels of atrazine me-
tabolites, typically in the parts-per-million or ppb range (365, 366), measured in human samples.
There are also no blood or urine measurements in exposed rodents to compare with human levels;
thus, extrapolations across species are estimates at best.

Keeping this qualification in mind, exposures in the range of 25-100 mg/kg - d during development
have been shown to alter mammary gland development (367, 368), estrous cyclicity (369), serum
and intratesticular testosterone concentrations (370), timing of puberty in males and prostate weight
(371), and immune function (372) in rodents. Lower doses of atrazine metabolites (0.09-8.73 mg/kg
+ d) altered development of the mammary gland (373), male pubertal timing and prostate develop-
ment (374). Identifying the range of doses administered to animals that produce the levels of atrazine
and its metabolites measured in human blood and urine is an essential research need to pursue low-
dose studies in rodents and other mammals.

F. Dioxin and spermatogenesis: low-dose effects from the most potent endocrine disruptor?

Dioxin, or TCDD, is formed as a byproduct of industrial processes as well as during waste incinera-
tion. Because TCDD is extremely toxic to some animals, with 1 pg/kg capable of killing 50% of guinea
pigs, it has been labeled the most toxic chemical on earth (375). But interestingly, other animals are
less sensitive to lethal effects of TCDD, with an LDsg of approximately 1000 pg/kg in hamsters, and
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studies also suggest that humans are not a hypersensitive species for lethality (376). Additionally,
there are differences in the half-life of TCDD in different animals; in rodents, the half-life is 2-4 wks,
but in humans, the half-life is approximately 10 yrs, and additional factors influence TCDD pharma-
cokinetics including the exposure level and the amount of body fat present (377-379). In cell cul-
tures, doses as low as 1011 M are toxic, with decreased viability observed even in cells maintained in
nonproliferative states (380).

TCDD binds to the aryl hydrocarbon receptor (AhR), and differences in the affinity for the receptor
may be responsible for differences in sensitivity between species (381). The K4 (dissociation constant
for receptor-ligand binding kinetics) in human samples typically ranges from 3-15 nM, but in samples
from rodents, the Ky is less than 1 nM (382). Importantly, there are also nongenomic pathways af-
fected by TCDD that are mediated by AhR that are typically altered within minutes of TCDD exposure
and therefore without changes in transcription (383). Yet many studies suggest that important differ-
ences exist between species regarding binding affinity of TCDD for AhR and the toxicity of this chemi-
cal, but that other adverse effects, including those related to the endocrine-disrupting activities of
TCDD, occur at similar doses (or body burdens) across animal species (384, 385). Thus, it is plausible
that AhR affinity alone can predict some, but not all, effects of TCDD and related chemicals.

The mechanisms responsible for many of the endocrine-disrupting activities of TCDD are currently
not well understood. Knocking out AhR disrupts morphogenesis of several organ systems even in the
absence of a ligand like TCDD, suggesting that this receptor plays important roles in early develop-
ment (386). AhR is translocated to the nucleus after loss of cell-cell contacts and is often localized to
the nucleus in embryonic cells, suggesting that it could have ligand-independent effects on develop-
ment and/or that endogenous ligands could be present during early development (387). When TCDD
is present, AhR translocates to the nucleus and dimerizes with ARNT, the aromatic hydrocarbon re-
ceptor nuclear translocator (388). Although the (currently unidentified) physiological activators of
AhR are likely to induce rapid on/off signaling via AhR, TCDD and related compounds appear to
maintain activation of AhR, and the presence of TCDD prevents the normal action of the AhR signal-
ing pathway in the maintenance of homeostasis (389). This induces changes in the expression of
genes and promotes the production of toxic metabolites. These effects may be responsible for some
of the endocrine-related endpoints affected by TCDD exposure. Additionally, recent studies have
shown complex and intricate interactions between the AhR and ER signaling pathways (390), suggest-
ing that dioxin may also have indirect effects on some ER-mediated endpoints via AhR signaling,

Teratogenic effects of TCDD have been well documented after high-dose (391, 392) and low-dose ex-
posures (393). These studies show that almost every organ and system in the body is affected by this
chemical. High doses that did not produce lethality caused severe weight loss, intestinal hemorrhag-
ing, alopecia, chloracne, edemas, and severe liver damage. Sadly, there are now several examples in
humans of accidental exposures after the industrial release of TCDD where a number of individuals
have been exposed to large doses (389, 394) as well as a few documented intentional poisonings
(395). The tolerated daily intake level was set at 1-4 pg/kg - d, although the doses consumed by nurs-
ing infants are likely to exceed these levels by a factor of 10 (375). Adult exposures usually result
from the consumption of contaminated foods, and because TCDD is lipophilic, it is concentrated in the
fat component of breast milk and therefore passed in large quantities from a nursing mother to her
infant.
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Using classical toxicology methods, the effects of single TCDD doses were examined in adult male rats,
specifically focusing on the effects of this chemical on the number of spermatids per testis and the in-
tegrity of the testicular germinal epithelium (396). In one of the earliest studies, Chahoud and col-
leagues (397) determined a LOAEL of 3 pg/kg - d and set the NOAEL at 1 pg/kg - d for effects on the
testes. Because there are significant differences in the toxicity of TCDD between animal models, and
different endpoints have different identified NOAELSs, we have selected the 1 pg/kg - d identified by
Chahoud et al. as the cutoff for low-dose studies of this compound. This cutoff is based on the NTP's
definition of low dose as occurring at doses lower than those tested in traditional toxicology assess-
ments (2). However, it is important to acknowledge that body burdens that mimic those observed in
human populations are likely the best indicators of low doses for TCDD (384), and thus we recom-
mend that future studies determine body burdens after administration of TCDD for the specific
strain, origin, and species of animal being tested to ensure that truly low doses, relevant to human
populations, are being tested.

Several recent epidemiological studies have indicated that rélatively high exposures to TCDD during
early life (due to industrial release of high amounts of the chemical) can permanently affect semen
quality and sperm count in men (398). Yet epidemiology studies also clearly show that the timing of
TCDD exposure can vastly influence the effect of this chemical on spermatogenesis; exposures during
perinatal life significantly reduced sperm parameters, but exposures during puberty increased sperm
counts; exposures in adulthood had no effect on sperm parameters (399). Thus, it is also important
for animal studies to focus on exposures during critical periods for development of the male repro-
ductive tract and spermatogenesis in particular.

We are aware of 18 studies that have examined the effects of low doses (<1 pug/kg - d) of TCDD dur-
ing perinatal development on male fertility endpoints in adulthood. The endpoints assessed vary, in-
cluding epididymal sperm counts, ejaculated sperm number, daily sperm production, sperm transit
rate, and percent abnormal sperm, and the sensitivity of these endpoints appears to impact the ability
to detect low-dose effects in different studies (400, 401) (Table 5). In total, 16 rodent studies exam-
ined the effect of low-dose TCDD on epididymal sperm count; 12 showed significant effects on this
endpoint (402-413), whereas the other four did not (414-417). Of the five studies that examined
ejaculated sperm counts, four studies (404, 405, 408), including one examining rhesus monkeys
(418), showed effects of low-dose TCDD, i.e. a significant decrease in sperm counts; one study found
no effect (417). Daily sperm production was a less-sensitive endpoint, with four studies showing sig-
nificant decreases after prenatal exposure to low doses (402, 403, 407, 409) and four studies show-
ing no effects (406, 412, 413, 416); sperm transit rate was examined in only two studies, although
both showed significant decreases in sperm tranfer rates (403, 410); and finally, three studies deter-
mined that low-dose TCDD produced abnormalities in sperm appearance or motility (414, 415, 419),
but one study was not able to replicate these findings (417).
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Table 5.

Summary of low-dose animal studies examining the effects of TCDD on spermatogenesis endpoints

Administered Epididymal Daily Sperm %
dose (time of sperm Ejaculated sperm transit abnormal
Study administration) Animal count sperm no. preoduction rate sperm
Mably etal. 0.064-1 pg/kg Rat Decreased NA Decreased  NA NA
(409) (gestational d 15)
Bjerkeand 1 ug/kg Rat Decreased NA Decreased NA NA
Peterson (gestational d 15)
402
Gray etal.  1pg/kg Rat Not Decreased NA NA NA
404 {gestational d 8) significant
1pg/keg Rat Decreased Decreased NA NA NA
(gestational d 15)
1 pg/kg Hamster Decreased Decreased NA NA NA
(gestational d 11)
Sommeret 1pg/kg Rat Decreased Decreased Decreased Not Not
al. (408) (gestational d 15) significant significant
Wilkeretal. 0.5,1or2 pg/kg Rat Decreased NA Unaffected  Increased NA
410 (gestational d 15)
Gray etal.  0.05-1 pg/kg Rat Decreased Decreased Decreased NA NA
(405) (gestational d 15)
Faqi etal 0.025-0.3 pg/kg Rat Decreased NA Decreased Increased Increased
(403) (before mating,
then 0.005-0.06
ng/kg weekly [to
dams])
Loefflerand 0.25 pg/kg Rat Decreased NA Unaffected NA NA
Peterson (gestational d 15)
412
Ohsakoet 0.0125-0.8 ug/kg Rat Not NA Unaffected NA NA
al (416) (gestational d 15) significant
Ohsakoet 1 pg/kg Rat Decreased NA Unaffected NA NA
al. (406) (gestational d 15)
1 pg/kg Rat Unaffected  NA Unaffected NA NA
(gestational d 18)

https://mww.ncbi.nim.nih.gov/pmc/articles/PMC3365860/ 36/125



12/14/22, 8:57 AM Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

Not significant indicates trend for effect but did not reach statistical significance. Unaffected means assessed, but no
differences were observed relative to controls. Here, low doses were considered any at or below 1 pg/kg - d (see text

for discussion of how this cutoff was established for rodent studies). NA, Not assessed.

When examining the TCDD literature as a whole, the WoE strongly suggests that prenatal exposure to
low doses of TCDD affects sperm-related endpoints in adulthood (Table 5). In all, only two studies
were unable to detect any effect of TCDD on the sperm endpoints assessed, although both studies
found effects of TCDD on other endpoints including the weight of the adult prostate (416) and the
timing of puberty (417). No study on TCDD used a positive control, likely due to a paucity of informa-
tion on the mechanisms of dioxin action, but this raises obvious questions about the ability of these
experimental systems to detect effects on spermatogenesis. Finally, some of the inability to detect ef-
fects of TCDD could be due to the use of insensitive strains, because 1000-fold differences in sensitiv-
ity have been reported for different rodent strains (420).

Even though we have focused the majority of our attention on the effects of low-dose TCDD exposure
on spermatogenesis, it should be noted that low doses of this chemical affect a multitude of end-
points in animals, altering immune function (421, 422), indicators of oxidative stress (423-425), bone
and tooth development (426, 427), female reproduction and timing of puberty (428-430), mammary
gland development and suceptibility to cancers (431), behaviors (432, 433), and others. In several
cases, lower doses were more effective at altering these endpoints than higher ones (423, 424, 426,
433). Epidemiology studies of nonoccupationally exposed individuals also indicate that serum TCDD
levels may be linked to diseases in humans as well (434). Mean serum TCDD levels have decreased by
a factor of 7 over a 25-yr period (1972-97) in several industrial nations (435), but results from both
animal and epidemiological studies suggest that even the low levels detected now could have adverse
effects on health-related endpoints.

G. Perchlorate and thyroid: low-dose effects in humans?

A significant challenge with observing low-dose effects of EDCs in the human population is that hu-
man chemical exposures are multivariate along the vectors of time, space, and sensitivities. In addi-
tion, chemicals can exert effects on several systems simultaneously. Therefore, associations in human
studies between exposures and disease are difficult to reconcile with experimental studies in animal
model systems. For this reason, the literature describing the potential impacts of perchlorate contam-
ination on the human population is potentially clarifying because to the best of our knowledge, per-
chlorate exerts only a single effect, and the pharmacology of perchlorate exposures has been studied
in human volunteers (436). This literature offers a unique perspective into the issue of low-dose ef-
fects, perhaps providing important hypotheses to explain mechanistically why high-dose, short-term
experiments can fail to predict the outcome of low-dose, lifetime exposures.

In the 2001-2002 NHANES dataset, perchlorate was detected in the urine of each of the 2820 sam-
ples tested (437). This widespread exposure means that the human population is being continuously
exposed because perchlorate has a half-life in the human body of about 8 h (438). Human exposures
to perchlorate are likely attributed to both contaminated drinking water and food (439); in fact, a re-
cent analysis concludes that the majority of human exposure to perchlorate comes from food (440).
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The predominant theory proposed to explain the source of perchlorate contamination in the United
States is that it has been employed for many decades as the principal oxidant in explosives and solid
rocket fuels (441). Perchlorate is chemically stable when wet and persists for long periods in geologi-
cal systems and in ground water. Because of disposal practices during the 1960s through 1990s, per-
chlorate became a common contaminant of ground water in the United States (441, 442). Perchlorate
is also formed under certain kinds of natural conditions (443), although the relative contributions to
human exposure of these different sources is not completely understood. As a result of perchlorate
contamination of natural waters, the food supply has become contaminated through irrigation in part
because both aquatic and terrestrial plants can concentrate perchlorate more than 100-fold over wa-
ter levels (444).

This exposure profile in the human population is important because high doses of perchlorate are
known to reduce functioning of the thyroid gland, and poor thyroid function is an important cause of
developmental deficits and adult disease (445). The primary question is: at what dose does perchlo-
rate inhibit thyroid function sufficiently to cause disease? The current literature, reviewed below, sup-
ports the view that background exposure may affect thyroid function in adult women. These expo-
sure levels, however, are considerably lower than predicted by early toxicology experiments in
humans.

Perchlorate reduces thyroid function by inhibiting iodide uptake by the sodium/iodide symporter
(NIS) (446), which is the only known effect of perchlorate on human physiology (438). NIS is respon-
sible for transporting iodide into the thyroid gland, which is required for the production of thyroid
hormone (447). However, NIS is also expressed in the gut (448, 449), in lactating breast (448, 450,
451), and in placenta (452), presumably all as a delivery mechanism for iodide to the developing and
adult thyroid gland. Because the NIS transports perchlorate (450), the pathway by which humans
take up and concentrate perchlorate is the same as the pathway by which humans take up and con-
centrate iodide. Interestingly, NIS expression in the human fetal thyroid gland is the rate-limiting step
in production of thyroid hormone (453). Moreover, NIS transport of perchlorate explains why high
levels of perchlorate are found in human amniotic fluid (454, 455) and breast milk (456-459).

This effect of perchlorate on thyroid function is important because thyroid hormone is essential for
normal brain development, body growth as well as for adult physiology (445, 460). Moreover, it has
become clear that even small deficits in circulating thyroid hormone in pregnant women (461, 462)
or neonates (463) have permanent adverse outcomes. In fact, recent work indicates that very subtle
thyroid hormone insufficiency in pregnant women is associated with cognitive deficits in their chil-
dren (461). Because of the importance of thyroid hormone in development and adult physiology, and
because perchlorate is a potent inhibitor of iodide uptake and thyroid hormone synthesis, identifying
the dose at which these events occur is critical.

Perchlorate was used medically to reduce circulating levels of thyroid hormone in patients with an
overactive thyroid gland in the 1950s and 1960s (reviewed in Ref. 446); therefore, it was reasonable
to examine the dose-response characteristics of perchlorate on the human thyroid gland. Because
perchlorate inhibits iodide uptake, several studies were performed to evaluate the effect of perchlo-
rate exposure on iodide uptake inhibition in human volunteers (438, 464~466). In one study, 0.5 or 3
mg/d (approximately 0.007 and 0.04 mg/kg - d) perchlorate was administered to healthy volunteers
(n = 9 females and 5 males, age 25-65 yr), and no effects were observed (466). Of course, it is impor-
tant to note that the 2 wk of administration tested in this study is not sufficient to see any effect on
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serum concentrations of T4 or TSH; the healthy thyroid can store several months' worth of thyroid
hormone in the gland (467). Another small study also found no effects of administering 3 mg/d (ap-
proximately 0.04 mg/kg - d) on any thyroid endpoint assessed (n = 8 adult males) (464).

In contrast, two studies examining adult volunteers administered perchlorate found effects of this
chemical on at least one endpoint. The first found that radioactive iodide uptake was affected by 2 wk
of exposure to 10 mg/d (0.13 mg/kg - d), but other measures of thyroid function were not altered (n
= 10 males) (465). The second examined adults (n = 37) given doses ranging from 0.007-0.5 mg/kg -
d; all but the lowest dose altered radioactive iodide uptake, and only the highest dose altered TSH lev-
els (438). These studies were interpreted to suggest that adults would have to consume 2 liters of
drinking water daily that was contaminated with at least 200 ppb (200 pg/liter) perchlorate to reach
a level in which iodide uptake would begin to be inhibited. Yet, these administered doses are high and
relatively acute, so the derivation of a safe dose from these studies, applied to vulnerable populations
such as those with low iodide intake, has been strongly disputed (471).

Studies of occupational exposures have also been used to examine the effects of exposure to rela-
tively high levels of perchlorate. In the first such study, more than 130 employees were separated into
eight groups based on exposure estimates from airborne perchlorate in the workplace (472). The au-
thors found that individuals with longer daily exposures to perchlorate, due to longer work shifts,
had significant decreases in TSH levels compared with individuals with shorter exposures. But this
study was hampered because actual exposure levels were not measured via urine or blood samples.
A second study examined 37 employees exposed to perchlorate and 21 control employees from an
azide factory; actual exposure measures were not conducted, but estimates were calculated based on
exposures to perchlorate dust and air samples (473). This study found no effects of perchlorate ex-
posures on any thyroid endpoint, although the sample size examined was small. In the final occupa-
tional exposure study, serum perchlorate levels were measured and compared with several measures
of thyroid function in workers (n = 29) who had spent several years as employees in a perchlorate
production plant (474). In this study, the most complete because of the biomonitoring aspect of the
exposure measures, higher perchlorate levels were associated with lower radioactive iodide uptake,
higher urinary iodide excretion, and higher thyroid hormone concentrations.

Although iodide uptake was often inhibited in these studies, serum thyroid hormones were typically
not altered, perhaps because of sufficient stored hormone. Based on these observations, the National
Academy Committee to Assess the Health Implications of Perchlorate Ingestion (467) estimated that
perchlorate would have to inhibit thyroid iodide uptake by about 75% for several months to cause a
reduction in serum thyroid hormones. Moreover, the drinking water concentration of perchlorate re-
quired for this kind of inhibition was estimated to be over 1,000 ppb (438). Therefore, the National
Academy of Sciences committee recommended a reference dose of 0.0007 mg/kg - d (467), based on
the dose at which perchlorate could inhibit iodide uptake, and the EPA used this value to set a provi-
sional drinking water standard of 15 ppb.

Considering these data and general knowledge about the thyroid system, it was unexpected that
Blount et al. (475) would identify a positive association between urinary iodide and serum TSH in
adult women in the NHANES 2001-2002 dataset. Yet several features of this dataset were consistent
with a causal action of perchlorate on thyroid function. First, in the general population of adult
women, urinary perchlorate was positively associated with serum TSH. In the population of adult
women who also had low urinary iodide, however, urinary perchlorate was more strongly associated
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with serum TSH and was negatively associated with serum T4. The strength of this association was
such that the authors calculated that women at the 50th percentile of perchlorate exposure experi-
enced a 1 pg/dl T4 reduction (reference range = 5-12 pg/dl). Should this magnitude of reduction in
serum T, occur in a neonate, measurable cognitive deficits would also be present (476). Finally,
Steinmaus et al. (477), using the same NHANES dataset, showed that women with low urinary iodide
who smoke had an even stronger association between urinary perchlorate and measures of thyroid
function. Tobacco smoke delivers thiocyanates, which also inhibit NIS-mediated iodide uptake (446).

The NHANES dataset suggests that perchlorate exposures of 0.2-0.4 pg/kg - d (440) are associated
with depressed thyroid function, even when urinary iodide is not reduced. This is a considerably
lower dose than the 7 ug/kg - d dose required to suppress iodide uptake in the Greer et al. (438)
study or the 500 pg/kg - d the NAS estimated would be required for several months to actually cause
a decline in serum T4. Therefore, it is reasonable to question whether these associations representa
causative relationship between perchlorate and thyroid function.

A number of epidemiological studies have been published to test for a relationship between perchlo-
rate exposure and thyroid function. Early work used neonatal screening data for T4 as a measure of
thyroid function, and the city of birth (Las Vegas, NV, compared with Reno, NV) as a proxy measure
of exposure (478, 479). The reported findings were negative, but we now know that all Americans
are exposed to perchlorate, so there was considerable misclassification of exposure, and no relation-
ship should have been observed. Several additional studies using similar flawed designs also found
no relationship between proxy measures of perchlorate exposures and clinical outcomes (480-484).

A recent study of the neonatal screening data from 1998 in California identified a strong association
between neonatal TSH and whether or not the mother resided in a contaminated area (485). This
study included over 497,000 TSH measurements and 800 perchlorate measurements. In addition,
they used as a cutoff a variety of TSH levels (as opposed to the 99.9th percentile used for the diagno-
sis of congenital hypothyroidism), indicating that perchlorate exposure is not associated with congen-
ital hypothyroidism. Two additional studies have shown similar relationships between perchlorate
and TSH levels, particularly in families with a history of thyroid disease (486, 487).

Several studies in pregnant women have failed to identify a relationship between perchlorate expo-
sure and measures of thyroid function (488-490). Although these are important studies that need to
be carefully scrutinized, they do not replicate or refute the NHANES dataset. It thus remains impor-
tant to conduct additional studies exploring the relationship between background exposure to per-
chlorate and thyroid function in adults, pregnant women, neonates, and infants. This effort will be
challenging because of the different characteristics of thyroid function and hormone action at differ-
ent life stages (460). In addition, it will be important to obtain individual measurements of exposures
to perchlorate and other NIS inhibitors (thiocyanate and nitrate), and iodide itself as well as individ-
ual measures of thyroid function (free and total T4 and TSH).

If background levels of perchlorate affect thyroid function in any segment of the population, it will be
challenging to explain how the high-dose, short-term experiments of Greer et al. (438) completely un-
derestimated the sensitivity of the human thyroid gland to perchlorate exposure. One possibility is
that physiological systems respond to short durations of robust stress with compensatory mecha-
nisms that reset during periods of long-term stress.
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When these data are examined together, several important issues are raised. First, this example illus-
trates the difficulties inherent in studying human populations; epidemiology yields associations, not
cause-effect relationships, in many cases using surrogate markers for perchlorate, and is not able to
distinguish short- vs. long-term exposure duration. Second, our WoE analysis suggests that there is
weak evidence for low-dose effects of perchlorate; further research is needed. The relationship be-
tween low-dose perchlorate exposures and thyroid endpoints would be strengthened by the addition
of studies that measure biological concentrations of perchlorate and compare them with thyroid end-
points in neonates and other vulnerable populations. Third, the published studies that reported low-
dose effects of perchlorate typically examined very specific populations, with several focusing on
women with low iodine intake. This observation suggests that some groups may be more vulnerable
to low doses of perchlorate than others (491).

H. Low-dose summary

These examples, and the examples of low-dose effects in less well-studied chemicals (Table 3), pro-
vide evidence that low-dose effects are common in EDC research and may be the default expectation
for all chemicals with endocrine activity. Many known EDCs have not been examined for low-dose ef-
fects, but we predict that these chemicals will have effects at low doses if studied appropriately.
Although studies unable to detect effects at low doses have received attention, including some studies
designed to replicate others that reported low-dose effects, the majority of these studies contain at
least one major design flaw. Thus, a WoE approach clearly indicates that low-dose effects are present
across a wide span of chemical classes and activities.

[II. Nonmonotonicity in EDC Studies

A concept related to low dose is that of nonmonotonicity. As noted in Section LB, in a monotonic re-
sponse, the observed effects may be linear or nonlinear, but the slope does not change sign (Fig. 3, A
and B). In contrast, a dose-response curve is nonmonotonic when the slope of the curve changes sign
somewhere within the range of doses examined (Fig, 3C). NMDRCs are often U-shaped (with maximal
responses of the measured endpoint observed at low and high doses) or inverted U-shaped (with
maximal responses observed at intermediate doses) (Fig, 3C, top panels). Some cases are more com-
plicated, with multiple points along the curve at which the slope of the curve reverses sign (Fig. 3C,
bottom left). Nonmonotonicity is not synomymous with low dose, because there are low-dose effects
that follow monotonic dose-response curves. Thus, it is not required that a study include doses that
span from the true low-dose range to the high toxicological range to detect nonmonotonicity. The
consequence of NMDRCs for toxicity testing is that a safe dose determined from high doses does not
guarantee safety at lower, untested doses that may be closer to current human exposures.
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Examples of dose-response curves. A, Linear responses, whether there are positive or inverse associations between

dose and effect, allow for extrapolations from one dose to another. Therefore, knowing the effects of a high dose per-

mits accurate predictions of the effects at low doses. B, Examples of monotonic, nonlinear responses. In these exam-

ples, the slope of the curve never changes sign, but it does change in value. Thus, knowing what happens at very high

or very low doses is not helpful to predict the effect of exposures at moderate doses. These types of responses often

have a linear component within them, and predictions can be made within the linear range, as with other linear re-

sponses, C, Displayed are three different types of NMDRCs including an inverted U-shaped curve, a U-shaped curve,

and a multiphasic curve, All of these are considered NMDRCs because the slope of the curve changes sign one or more
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times. It is clear from these curves that knowing the effect of a dose, or multiple doses, does not allow for assump-
tions to be made about the effects of other doses. D, A binary response is shown, where one range of doses has no ef-

fect, and then a threshold is met, and all higher doses have the same effect.

Examples of NMDRCs from the cell culture, animal, and epidemiological literature will be discussed in
detail in Section III.C. Importantly, our review of the literature finds that NMDRCs are common in the
endocrine and EDC literature. In fact, it is plausible that, considering the mechanisms discussed be-
low; NMDRCs are not the exception but should be expected and perhaps even common.

A. Why is nonmonotonicity important?

NMDRCs in toxicology and in the regulatory process for EDCs are considered controversial. In addi-
tion to discussions of whether NMDRCs exist, there is also discussion of whether those that do exist
have relevance to toxicological determination of putative safe exposures. In the standard practice of
regulatory toxicology, the calculated safe dose, also called a reference dose, is rarely tested. In a sys-
tem that is responding nonmonotonically, it is not appropriate to use a high-dose test to predict low-
dose effects. Unfortunately, all regulatory testing for the effects of chemical exposures assume that
this is possible. All current exposure standards employed by government agencies around the world,
including the FDA and EPA, have been developed using an assumption of monotonicity (492, 493).
The low-dose range, which presumably is what the general public normally experiences, is rarely, if
ever, tested directly.

The standard procedure for regulatory testing typically involves a series of tests to establish the low-
est dose at which an effect is observable (the LOAEL), then a dose beneath that at which no effect is
observable (the NOAEL). Then a series of calculations are used to acknowledge uncertainty in the
data, species differences, age differences, etc., and those calculations, beginning with the LOAEL or
the NOAEL, produce a reference dose that is presumed to be a safe exposure for humans (Fig, 4).
Typically, the reference dose is 3- to 1000-fold lower than the NOAEL. That reference dose then be-
comes the allowable exposure and is deemed safe, even when it is never examined directly. For chem-
icals with monotonic linear dose-response curves (Fig, 3A), this may be appropriate. But for chemi-
cals that display nonmonotonic patterns, it is likely to lead to false negatives, i.e. concluding that expo-
sure to the reference dose is safe when in fact it is not.
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Figure 4.

NOAEL, LOAEL, and calculation of a safe reference dose. A, In traditional toxicology testing, high doses are tested to
obtain the maximum tolerated dose (MTD), the LOAEL, and the NOAEL. Several safety factors are then applied to de-
rive the reference dose, i.e. the dose at which exposures are presumed safe. This reference dose is rarely tested di-
rectly. Yet when chemicals or hormones produce NMDRCs, adverse effects may be observed at or below the reference
dose. Here, the doses that would be tested are shown by a dotted line, and the calculated safe dose is indicated by a
thick solid line. The actual response, an inverted U-shaped NMDRC, is shown by a thin solid line. B, Experimental data
indicate that EDCs and hormones do not have NOAELs or threshold doses, and therefore no dose can ever be consid-
ered safe. This is because an exogenous hormone (or EDC) could have a linear response in the tested range (dotted
line), but because endogenous hormones are present (thin solid line), the effects of the exogenous hormone are always

observed in the context of a hormone-containing system.
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As described above, there are other nonlinear dose-response curves that are monotonic (Fig. 3B).
These curves may also present problems for extrapolating from high doses to low doses because
there is no linear relationship that can be used to predict the effects of low doses. Equally troubling
for regulatory purposes are responses that have a binary response rather than a classical dose-re-
sponse curve (Fig. 3D). In these types of responses, one range of doses has no effect on an endpoint,
and then a threshold is met, and all higher doses have the same effect. An example is seen in the
atrazine literature, where doses below 1 ppb had no effect on the size of the male larynx but doses at
or above 1 ppb produced a significant decrease in size of approximately 10-15% (336). Even doses
of 200 ppb, the toxicological NOEL, produce the same effect. Thus, this all-or-none effect is observed
because atrazine does not shrink the larynx; instead, it removes the stimulatory agent (i.e. andro-
gens). In the absence of some threshold dose of androgen, the larynx simply remains at the unstimu-
lated (female) size. The EPA's assessment of this study and others was that the lack of a dose-depen-
dent response negates the importance of this effect (352). The lack of a dose response for a thresh-
old effect like larynx size does not mean that the effects are not dose dependent; thus, understanding
these types of effects and their implications for risk assessments is essential for determining the safe
levels of chemicals.

Itis important to mention here that the appropriateness of determining NOAEL concentrations, and
therefore calculating reference doses, from exposures to endogenous hormones or EDCs has been
challenged by several studies (Fig._4A) (494-496). These studies show that hormonally active agents
may still induce significant biological effects even at extremely low concentrations and that presently
available analytical methods or technologies might be unable to detect relatively small magnitudes of
effects. Previous discussions of this topic have shown that as the dose gets lower (and approaches
zero) and the effect size decreases, the number of animals needed to achieve the power to detecta
significant effect would have to increase substantially (497). Even more importantly, the assumption
of a threshold does not take into account situations where an endogenous hormone is already above
the dose that causes detectable effects and that an exogenous chemical (whether an agonist or antag-
onist) will modulate the effect of the endogenous hormone at any dose above zero (Fig, 4B). There
can thus be no threshold or safe dose for an exogenous chemical in this situation. Forced identifica-
tion of NOAEL or threshold doses based on the assumption that dose-response curves are always
monotonic without considering the background activity of endogenous hormones and the limitations
of analytical techniques supports the misconception that hormonally active agents do not have any
significant biological effects at low doses. Thus, the concept that a toxic agent has a safe dose that can
be readily estimated from the NOAEL derived from testing high, acutely toxic doses is overly simplistic
and contradicted by data when applied to EDC (5, 497, 498).

B. Mechanisms for NMDR(Cs

Previously, the lack of mechanisms to explain the appearance of NMDRCs was used as a rationale for
ignoring these phenomena (492, 493). This is no longer acceptable because there are several mecha-
nisms that have been identified and studied that demonstrate how hormones and EDCs produce non-
monotonic responses in cells, tissues, and animals. These mechanisms include cytotoxicity, cell- and
tissue-specific receptors and cofactors, receptor selectivity, receptor down-regulation and desensiti-
zation, receptor competition, and endocrine negative feedback loops. These mechanisms are well un-
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derstood, and by providing detailed biological insights at the molecular level into the etiology of
NMDRCs, they strongly negate the presumption that has been central to regulatory toxicology that
dose-response curves are by default monotonic.

1.Cytotoxicity

The simplest mechanism for NMDRCs derives from the observation that hormones can be acutely
toxic at high doses yet alter biological endpoints at low, physiologically relevant doses. Experiments
working at concentrations that are cytotoxic are incapable of detecting responses that are mediated
by ligand-binding interactions. For example, the MCF7 breast cancer cell line proliferates in response
to estradiol in the low-dose range (10712 to 10~ M) and in the pharmacological and toxicological
range (107! to 1076 M), but toxic responses are observed at higher doses (38). Thus, when total cell
number is graphed, it displays an inverted U-shaped response to estrogen. But cells that do not con-
tain ER, and therefore cannot be affected by the hormonal action of estradiol, also display cytotoxic
responses when treated with high doses of hormone. These results clearly indicate that the effects of
estradiol at high doses are toxic via non-ER-mediated mechanisms.

2. Cell- and tissue-specific receptors and cofactors

Some NMDRCs are generated by the combination of two or more monotonic responses that overlap,
affecting a common endpoint in opposite ways via different pathways. For example, in vitro cultured
prostate cell lines demonstrate a nonmonotonic response to increasing doses of androgen where low
doses increase cell number and higher doses decrease cell number, thus producing an inverted U-
shaped curve (499, 500). Although the parental cell expressed an inverted U-shaped dose-response
curve, after a long period of inhibition, the effects on cell number could be segregated by selecting
two populations of cells: one that proliferated in the absence of androgens and other cells that prolif-
erated in the presence of high androgen levels (501). Thus, the observed inverted U-shaped response
is due to actions via two independent pathways that can be separated from each other in an experi-
mental setting (502). Similarly, estrogens have been shown to induce cell proliferation and inhibit
apoptosis in several cell populations, but inhibit proliferation and induce apoptosis in others (503,
504), with the combined effect being an inverted U-shaped curve for cell number (505).

Why does one single cell type have different responses to different doses of the same hormone? The
case of the prostate cell line described above is reminiscent of the results described from the tran-
scriptome of MCF7 cells, whereby a discrete global response like cell proliferation manifests at signifi-
cantly lower estrogen doses than the induction of a single marker gene (135). That a response like
cell proliferation requires a significantly lower dose of hormone than the dose needed to induce a
given target gene is counterintuitive but factual; it may be interpreted as consistent with the notion
that metazoan cells, like cells in unicellular organisms, are intrinsically poised to divide (503, 506,
507) and that quiescence is an induced state (508, 509). The biochemical details underlying these dif-
ferent responses are largely unknown; however, recent studies showed that steroid receptors control
only a portion of their target genes directly via promoter binding. The majority of the changes are in-
direct, through chromatin rearrangements (510, 511).
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Why do different cell types (in vitro and in vivo) have different responses to the same hormone? One
answer is that they may express different receptors, and these receptors have different responses to
the same hormone. For example, some tissues express only one of the two major ER (ERa and ER),
and actions via these receptors are important not just for responsiveness to hormone but also for
cellular differentiation and cross talk between tissue compartments (512). Yet other tissues express
both ERa and ERB, and the effects of signaling via these two receptors often oppose each other; ie
estrogen action via ERa induces proliferation in the uterus, but ERB induces apoptosis (154).
Complicating the situation further, different responses to a hormone can also be obtained due to the
presence of different cofactors in different cell and tissue types (513, 514); these coregulators influ-
ence which genes are transcriptionally activated or repressed in response to the presence of hor-
mone. They can also influence ligand selectivity of the receptor and DNA-binding capacity, having
tremendous impact on the ability of a hormone to have effects in different cell types (105, 515, 516).

Although much of these activities occur on a biochemical level, i.. at the receptor, there is also evi-
dence that nonmonotonicity can originate at the level of tissue organization. The mammary gland has
been used as a model to study inter- and intracompartmental effects of hormone treatment: within
the ductal epithelium, estrogen has distinct effects during puberty, both inducing proliferation, which
causes growth of the ductal tree, and inducing apoptosis, which is required for lumen formation
(517, 518); in cell culture, the presence of stromal cells can also enhance the effects of estrogen on
epithelial cells (519, 520), suggesting that stromal-epithelial compartmental interactions can mediate
the effects of estrogen.

3. Receptor selectivity

NMDRCs can occur because of differences in receptor affinity, and thus the selectivity of the re-
sponse, at low vs. high doses. For example, at low doses, BPA almost exclusively binds to the ER (in-
cluding mER), but at high doses it can also bind weakly to other hormone receptors, like androgen
receptor and thyroid hormone receptor (249, 521). This type of receptor nonselectivity is quite com-
mon for EDCs, and it has been proposed that binding to different receptors may be an explanation
for the diverse patterns of disease observed after EDC exposures (522). In fact, several of the chemi-
cals shown to have low-dose effects are known to act via multiple receptors and pathways (Table 3).
Thus, the effects seen at high doses can be due to action via the binding of multiple receptors, com-
pared with the effects of low doses, which may be caused by action via only a single receptor or re-
ceptor family.

4. Receptor down-regulation and desensitization

When hormones bind to nuclear receptors, the ultimate outcome is a change in the transcription of
target genes. When the receptor is bound by ligand, an increase in response is observed; as dis-
cussed previously in this review, the relationship between hormone concentration and the number of
bound receptors, as well as the relationship between the number of bound receptors and the biologi-
cal effect, is nonlinear (38). After the nuclear receptor is bound by hormone and transcription of tar-
get genes has occurred (either due to binding of the receptor at a DNA response element or the relief
of a repressive event on the DNA), the reaction eventually must cease; i.e. the bound receptor must
eventually be inactivated in some way. Thus, nuclear hormone receptors are ubiquitinated and de-
graded, usually via the proteasome (523). Importantly, the role of the hormone in receptor degrada-
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tion differs depending on the hormone; binding of estrogen, progesterone, and glucocorticoid medi-
ates the degradation of their receptors (524-526), whereas the presence of hormone may actually
stabilize some receptors and prevent degradation (527), and other receptors are degraded without
ligand (528). As hormone levels rise, the number of receptors being inactivated and degraded also
rises, and eventually the number of receptors being produced cannot maintain the pace of this degra-
dation pathway (523). Furthermore, the internalization and degradation of receptors can also influ-
ence receptor production, leading to an even stronger down-regulation of receptor (529). In the ani-
mal, the role of receptor down-regulation is actually quite complex, because signaling from one hor-
mone receptor can influence protein levels of another receptor; i.e. ER signaling can promote degra-
dation of the glucocorticoid receptor by increasing the expression of enzymes in the proteasome
pathway that degrade it (330).

There is also the issue of receptor desensitization, a process whereby a decrease in response to a
hormone is not due to a decrease in the number of available receptors but instead due to the bio-
chemical inactivation of a receptor (531). Desensitization typically occurs when repeated or continu-
ous exposure to ligand occurs. Normally seen with membrane-bound G protein-coupled receptors,
the activation of a receptor due to ligand binding is quickly followed by the uncoupling of the acti-
vated receptor from its G proteins due to phosphorylation of these binding partners (532). Receptor
desensitization has been observed for a range of hormones including glucagon, FSH, human chori-
onic gonadotropin, and prostaglandins (533). Importantly, desensitization and down-regulation can
occur in the same cells for the same receptor (534), and therefore, both can play a role in the pro-
duction of NMDRCs.

5. Receptor competition

Mathematical modeling studies suggest that the mixture of endogenous hormones and EDCs estab-
lishes a natural environment to foster NMDRCs. Using mathematical models, Kohn and Melnick (42)
proposed that when EDC exposures occur in the presence of endogenous hormone and unoccupied
hormone receptors, some unoccupied receptors become bound with the EDC, leading to an increase
in biological response (i.e. increased expression of a responsive gene, increased weight of an organ,
etc.). At low concentrations, both the endogenous hormone and the EDC bind to receptors and acti-
vate this response, but at high doses, the EDC can outcompete the natural ligand. The model predicts
that inverted U-shaped curves would occur regardless of the binding affinity of the EDC for the re-
ceptor and would be abolished only if the concentration of natural hormone were raised such that all
receptors were bound.

6. Endocrine negative feedback loops

In several cases, the control of hormone synthesis is regulated by a series of positive- and negative
feedback loops. Several hormones are known to control or influence their own secretion using these
feedback systems. In one example, levels of insulin are known to regulate glucose uptake by cells.
Blood glucose levels stimulate insulin production, and as insulin removes glucose from circulation, in-
sulin levels decline. Thus, NMDRCs can occur as the free/available ligand and receptor concentrations
are influenced by one another. In another example, thyroid hormone secretion is stimulated by TSH,
and thyroid hormone suppresses TSH; thus, feedback between these two hormones allows thyroid
hormone to be maintained in a narrow dose range.
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Several studies indicate that these negative feedback loops could produce NMDRCs when the dura-
tion of hormone administration is changed (535). For example, short exposures of estrogen induce
proliferation in the uterus and pituitary, but longer hormone regimens inhibit cell proliferation (236,
536). Thus, the outcome is one where exposure to a single hormone concentration stimulates an end-
point until negative feedback loops are induced and stimulation ends (537).

7. Other downstream mechanisms

Removing the variability that can come from examining different cell types, or even single cell types in
the context of a tissue, studies of cultured cells indicate that different gene profiles are affected by
low doses of hormone compared with higher doses. In a study of the genes affected by low vs. higher
doses of estrogen, researchers found that there were a small number of genes in MCF7 breast cancer
cells with very high sensitivity to low doses of estradiol (10 pM) compared with the total number of
genes that were affected by higher (30 or 100 pM) exposures (538). But the surprising finding was
the pattern of estradiol-induced vs. estradiol-suppressed gene expression at high and low doses;
when 10 pM was administered, the number of estradiol-suppressible genes was approximately three
times higher than the number of estradiol-inducible genes. However, the overall profile of the num-
ber of estradiol-suppressible genes was approximately half the total number of estradiol-inducible
genes. This observation suggests that low doses of estrogen selectively target a small subset of the to-
tal number of estrogen-sensitive genes and that the genes affected by low doses are most likely to be
suppressed by that treatment. The mechanisms describing how low doses of estrogen differently af-
fect the expression of genes compared with higher doses have yet to be elucidated, but low doses of
estradiol inhibit expression of apoptotic genes (539), indicating that which genes are affected by hor-
mone exposure is relevant to understand how low doses influence cellular activities.

C. Examples of nonmonotonicity
1. Examples of NMDRCs from cell culture

A tremendous amount of theoretical and mathematical modeling has been conducted to understand
the production of nonlinear and nonmonotonic responses (42, 540). These studies and others sug-
gest that the total number of theoretical response curves is infinite. Yet this does not mean that the
occurrence of NMDRCs is speculative; these types of responses are reported for a wide variety of
chemicals. Cell culture experiments alone provide hundreds of examples of nonmonotonic responses
(see Table 6 for examples). In the natural hormone category, many different hormones produce
NMDRCs; this is clearly not a phenomenon that is solely attributable to estrogen and androgen, the
hormones that have been afforded the most attention in the dose-response literature. Instead,
NMDRCs are observed after cells are treated with a range of hormones, suggesting that this is a fun-
damental and general feature of hormones.

https:/iwww.ncbi.nim.nih.gov/pmc/articles/PMC3365860/ 49/125



12/14/22, 8:57 AM Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

Table 6.

Examples of NMDRCs in cell culture experiments

Chemicals by chemical
class Nonmonotonic effect Cell type Refs
Natural hormones
17B-Estradiol Cell number MCF7 breast cancer cells 135,716
Dopamine uptake Fetal hypothalamic cells 17
(primary)
PERK levels, prolactin release GH3/B6/F10 pituitary cells 41, 718,
719
B-Hexosaminidase release HMC-1 mast cells 720
Cell number Vascular smooth muscle 721
cells
Production of L-PGDS, a sleep- U251 glioma cells 722
promoting substance
Sa- Cell number LNCaP-FGC prostate cancer 499
Dihydrotestosterone cells
Cell number; kinase activity Vascular smooth muscle 721
cells
Sa-Androstenedione Cell number LNCaP-FGC prostate cancer 499
cells
Corticosterone Mitochrondrial oxidation, calcium Cortical neurons (primary) 723
flux
Insulin Markers of apoptosis (in absence of Pancreatic B-cells (primary) 724
glucose)
Progesterone Cell number LNCaP-FGC prostate cancer 499
cells
Prolactin Testosterone release Adult rat testicular cells 725
(primary)
hCG Testosterone release Adult rat testicular cells 725
(primary)
Tj Rate of protein phosphorylation Cerebral cortex cells 726
(primary, synaptosomes)
LPL mRNA expression White adipocytes (rat 727

Due to space concerns, we have not elaborated on the shape of the curve (U, inverted U, or other nonmonotonic shape)

primary)

or the magnitude of observed effects in this table. CXCL12, Chemokine (C-X-C motif) ligand 12; DEHP, bis(2-ethyl-
hexyl) phthalate; DHT, dihydrotestosterone; hCG, human chorionic gonadotropin; MMP, matrix metalloproteinase;
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PAH, polyaromatic hydrocarbons; PBDE, polybrominated diphenyl ethers; PCB, polychlorinated biphenyl; pERK,
phospho-ERK; PGDS, prostaglandin-D synthase; pJNK, phospho-c-Jun N-terminal kinase.

Chemicals from a large number of categories with variable effects on the endocrine system also pro-
duce NMDRCs in cultured cells. These chemicals range from components of plastics to pesticides to
industrial chemicals and even heavy metals. The mechanisms for nonmonotonicity discussed in
Section IIL.B are likely explanations for the NMDRCs reported in a range of cell types after exposure
to hormones and EDCs. Table 6 provides only a small number of examples from the literature, and it
should be noted that because these are studies of cells in culture, most of these studies typically ex-
amined only a few types of outcomes: cell number (which could capture the effects of a chemical on
cell proliferation, apoptosis, or both), stimulation or release of another hormone, and regulation of
target protein function, often examined by measuring the phosphorylation status of a target.

2. Examples of NMDRCs in animal studies

Some scientists suggest that nonmonotonicity is an artifact of cell culture, however, a large number of
NMDRCs have been observed in animals after administration of natural hormones and EDCs, refuting
the hypothesis that this is a cell-based phenomenon only. Similar to what has been observed in cul-
tured cells, the NMDRCs observed in animals also span a large range of chemicals, model organisms,
and affected endpoints (Table 7). These results underscore the biological importance of the mecha-
nisms of nonmonotonicity that have been largely worked out in vitro.
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Table 7.

Examples of NMDRCs in animal studies

Chemicals by chemical class Nonmonotonic effect Organ/sex/animal Refs.
Natural hormones
178-Estradiol Morphological parameters Mammary gland/female/mice 138,
541
Accumulation of cAMP Pineal /female/rats 760
Prostate weight male/mice 689
Uterine weight female/mice 761
Antidepressant effects, Behavior/male/mice 762

measured by immobility

assay
Nocturnal activity, gene Brain and behavior/female/mice = 763
expression in preoptic area
Corticosterone Spatial memory errors Behavior/male/rats 764
Cholinergic fiber loss in Brain/male/rats 765
cortex after treatment with
neurodegenerative drugs
Mitochondrial metabolism Muscle/male/rats: strain 766
differences
Contextual fear conditioning  Behavior/male/rats 767
Locomotor activity Behavior/male/captive Adelie 768
penguins
Glucocorticoid Na*/K*-ATPase activity Brain/tilapia (fish) 769
Testosterone Na*/K*-ATPase activity Brain/tilapia (fish) 769
Gonadotropin subunit gene Pituitary /sexually immature 770
expression goldfish
11p- Gonadotropin subunit gene Pituitary /sexually immature 770
Hydroxyandrosterone expression goldfish
Ts Bone growth Tibia/male/rats with induced 771
hypothyroidism
Leptin Insulin production (in the Pancreas /male/rats 560
presence of glucose)
Oxytocin Infarct size, plasma LDH Brain and blood/male/rats 772
levels, creatine kinase v
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Due to space concerns, we have not elaborated on the shape of the curve (U, inverted U, or other nonmonotonic shape)
or the magnitude of observed effects in this table. DEHP, Bis(2-ethylhexyl) phthalate; DHT, dihydrotestosterone; LDH,
lactate dehydrogenase; PCB, polychlorinated biphenyl; PDGF, platelet-derived growth factor;

Although NMDRCs attributable to estrogen treatment are well documented, the induction of NMDRCs
is again observed to be a general feature of hormone treatment; a wide range of hormones produce
these types of responses in exposed animals. Importantly, a number of pharmaceutical compounds
with hormone-mimicking or endocrine-disrupting activities also produce NMDRCs. Finally, as ex-
pected from the results of cell culture experiments, chemicals with many different modes of action
generate NMDRCs in treated animals.

Perhaps most striking is the range of endpoints affected, from higher-order events such as the num-
ber of viable offspring (which could be due to alterations in the reproductive tissues themselves or
the reproductive axis), to behavioral effects, to altered organ weights, and to lower-order events such
as gene expression. The mechanisms responsible for these nonmonotonic phenomena may be similar
to those studied in cell culture systems, although additional mechanisms are likely to be operating in
vivo such as alterations in tissue organization (541) and the interactions of various players in the
positive and negative feedback loops of the endocrine system.

3. Examples of NMDRCs in the epidemiology literature

Perhaps not surprisingly, natural hormones produce NMDRCs in human populations as well (Table 8
). Although the methods needed to detect NMDRCs in humans are specific to the field of epidemiol-
ogy, these results support the idea that NMDRCs are a fundamental feature of hormones. Importantly,
it should be noted that most of the individuals surveyed in studies examining the effects of natural
hormones have a disease status or are elderly. This of course does not mean that natural hormones
induce NMDRCs in only these select populations but may instead be a reflection of the types of indi-
viduals available for these studies (for example, there are very few clinical events in younger people).
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Table 8.

Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

NMDRCs for natural hormones identified in the epidemiology literature

Hormone Affected endpoint NMDRC Study subjects

Testosterone Incidence of coronary  Incidence of 25% atextremes Rancho Bernardo Study

(free) events of exposure, 16% at moderate participants, women aged
exposure 40+ (n = 639}

Depression Hypo- and hypergonadal had Androx Vienna Municipality

higher depression scores Study participants, manual
than those with intermediate  workers, men aged 43-67 (n
free testosterone = 689)

PTH Mortality ~50% excess risk for Hemodialysis patients (n =
individuals with low or high  3946)
iPTH

Risk of vertebral orhip ~33% higher for low or high  Elderly dialysis patients (n=
fractures iPTH compared to normal 9007)
levels
TSH Incidence of About double the incidence in Framingham Study
Alzheimer's disease lowest and highest tertilein  participants (elderly) (n=
women (no effects observed 1864, 59% women)
in men)

Leptin Mortality Mortality ~10% higher for Framingham Heart Study
lowest and highest leptin participants (elderly) (n=
levels 818, 62% women)

Insulin Coronary artery Higher for low and high Nondiabetic patients with

calcification insulin area under the curve  suspected coronary heart
measures. disease, cross-sectional (n=
582)
Mortality Relative risk ~1.5 for highest Helsinki Policemen Study
(noncardiovascular and lowest fasting insulin participants, men aged 34-64
only) levels (n=970)

Cortisol BMI, waist Low cortisol secretion per Whitehall II participants,

circumference hour for individuals with adults, cross-sectional {n =
highest and lowest BMI, 2915 men; n = 1041 women)
waist circumference

Major depression (by Slight increases at extrtemes  Longitudinal Aging Study

diagnostic interview) of cortisol Amsterdam participants,

BM], Body mass index; iPTH, intact PTH; PTH, parathyroid hormone.
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NMDRCs observed in the epidemiology literature from human populations exposed to EDCs are now
starting to receive attention (Table 9). Here, most reports of NMDRCs come from studies of healthy
individuals exposed to persistent organic pollutants POPs, chemicals that do not easily degrade and
consequently bioaccumulate in human and animal tissues (542). These POPs do encompass a range
of chemical classes including components of plastics, pesticides, and industrial pollutants. A large
number of these studies have focused on endpoints that are relevant to metabolic disease, and to-
gether, these studies show that there is a recurring pattern of NMDRCs related to POPs and disease.
Of course, not every study of POPs shows NMDRCs, and this is probably due to the distribution of
EDCs in the populations examined.
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Table 9.

NMDRCs for EDCs identified in the epidemiology literature

Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

Chemicals by chemical
class Affected endpoint NMDRC Study subjects Refs.
Insecticides
Trans-nonachlor Diabetes incidence Highestrisk in groups CARDIA participants, 833
with intermediate case-control study (n =
exposures (quartile 2) 90 cases and n =90
controls)
Telomere length in Increased length in Adults aged 40+ 591
peripheral leukocytes intermediate exposures  (Korea, n = 84)
(quintile 4}
p.p"-DDE BM]I, triglyceride Highestrisk in groups CARDIA participants (n 590
levels, HDL with intermediate = 90 controls from
cholesterol exposures (quartile 3} nested case control
study)
Risk of rapid infant For infants born to Infants from Childhood 834
weight gain women of normal weight and the Environment
prepregnancy, risk is project, Spain (n = 374
highest with from normal
intermediate exposures.  prepregnancy weight
mothers; n = 144 from
overweight mothers)
Telomere length in Increased length with Adults aged 40+ 591
peripheral leukocytes intermediate exposures  (Korea, n = 84)
(quintile 4)
Oxychlordane Bone mineral density With low exposures, fat NHANES 1999-2004 835
of arm bones mass had inverse participants, aged 50+
associations withbone  (n =679 women,n=
mineral density; with 612 men)
high exposures, fat mass
had positive associations
with bone mineral
density.
Plastics
Mono-methyl Atherosclerotic Increased risk in Adults aged 70, living 836
phthalate (MMP) plaques intermediate exposure in Sweden (n = 1016)
amerran fmecimallan ™ AN

BMI, Body mass index; HCDD, hexachloro-dibenzo-p-dioxin; HDL, high-density lipoprotein; PCB, polychlorinated
biphenyls; PFOA, perfluorooctanoic acid; PBB, polybrominated biphenyl; PBDE, polybrominated diphenyl ethers;
POP, persistent organic pollutants.
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“In many cases, multiple chemicals in the same class had similar effects. A few chemicals were selected to illustrate
the observed effect. This listis not comprehensive,

In addition to the studies that show strong evidence for NMDRCs in human populations, there is also
a subset of studies that provide suggestive evidence for nonmonotonic relationships between EDCs
and human health endpoints (Table 9). In fact, the authors of many of these papers clearly identify U-
or inverted U-shaped dose-response curves. However, when authors do not perform the appropriate
statistical tests to verify the presence of a NMDRC, there is some ambiguity in their conclusions. The
usual cross-sectional vs. prospective design dichotomy in epidemiology also is a factor that can influ-
ence the strength of a NMDRC, or prevent the detection of one at all, This disjunction in design is of-
ten incongruous with EDC exposure studies because we often know very little about clearance rates
of the chemical, interactions with adiposity, and changes to these factors with age and gender. Yet re-
gardless of any possible weaknesses in these studies, they provide supportive evidence that NMDRCs
are observed in human populations.

Because these reports of NMDRCs in human populations are relatively new, few mechanisms have
been proposed for these phenomena. Why would risk curves be nonmonotonic over the dose distri-
bution observed in human populations? Why would individuals with the highest exposures have less
severe health outcomes compared with individuals with more moderate exposures? One plausible ex-
planation is that the same mechanisms for NMDRCs in animals and cell cultures operate in human
populations: chronic exposures to high doses can activate negative feedback loops, activate receptors
that promote changes in different pathways that diverge on the same endpoint with opposing effects,
or produce some measure of toxicity. Accidental exposures of very large doses may not behave the
same as background doses for a variety of reasons, including the toxicity of high doses; these large
doses tend to occur over a short time (and therefore more faithfully replicate what is observed in an-
imal studies after controlled administration).

Another explanation is that epidemiology studies, unlike controlled animal studies, examine truly
complex mixtures of EDCs and other environmental chemicals. Some chemical exposures are likely to
be correlated due to their sources and their dynamics in air, water, soil, and living organisms that are
subsequently eaten. Therefore, intake of these chemicals may produce unpredicted, likely nonlinear
outcomes whether the two chemicals act via similar or different pathways.

The design of observational epidemiological studies is fundamentally different from studies of cells
or animals, in that the EDC exposure distributions are given, rather than set by the investigator. In
particular, as shown in Fig. 5, different epidemiological populations will have different ranges of ex-
posure, with the schematic example showing increasing risk in a population with the lowest expo-
sures (labeled group A), an inverted U-shaped risk in a moderate dose population (labeled group B),
and an inverse risk in a population with the highest exposures (labeled group C). An additional exam-
ple is provided (labeled group D) in which an industrial spill shows high risk, but the comparison
with the entire unaffected population with a wide variety of risk levels due to differential background
exposure could lead to a high- or a low-risk reference group and a wide variety of possible findings.
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Figure 5.

Example of a NMDRC in humans and the sampling populations that could be examined in epidemiology studies. This
schematic illustrates a theoretical NMDRC in a human population. If a study were to sample only group A, the conclu-
sion would be that with increasing exposures, risk increases monotonically. Sampling group B would allow re-
searchers to conclude that there is a nonmonotonic relationship between exposure level and risk. If a study included
only group C, the conclusion would be that with increasing exposures, there is decreased risk of disease. Group D rep-
resents a population that was highly exposed, i.e. due to an industrial accident. This group has the highest risk, and
there is a monotonic relationship between exposures and risk, although risk is high for all individuals. In the group D
situation, there is generally a background population with which high-dose exposure is compared (dotted line); rela-
tive risk for group D would depend on whether that background population resembles group A, B, or C. From this ex-
ample, itis clear that the population sampled could strongly influence the shape of the dose-response curve produced
as well as the conclusions reached by the study.

It is reasonable to suggest that even though epidemiological studies are an assessment of exposures
at a single time point, many of these pollutants are persistent, and therefore a single measure of their
concentration in blood may be a suitable surrogate for long-term exposures. The movement of peo-
ple from relatively low- to higher-exposure groups over time depend on refreshed exposures, clear-
ance rates, and individual differences in ability to handle exposures (i.e. due to genetic susceptibili-
ties, amount of adipose tissue where POPs can be stored, etc.).

Figure 5 therefore further illustrates that observational epidemiological studies yield the composite
effect of varying mixtures of EDCs at various exposure levels for various durations, combining acute
and chronic effects. These studies are important, however, in that they are the only way to study EDC
effects in the long term in intact humans, as opposed to studying signaling pathways, cells, organs, or
animal models over limited periods of time. Causal inference is not done directly from the epidemio-
logical study results; instead, it is done via combining information from the epidemiological observa-
tions with findings from the detailed studies of pathways and animals.

We have suggested that NMDRCs are a fundamental and general feature of hormone action in cells
and animals. It is therefore worth asking whether NMDRCs are expected in the epidemiology litera-
ture. The endpoints assessed in epidemiology studies are typically integrated effects, rather than
short-term effects; therefore, the various cell- or organ-specific effects may cancel each other, partic-

hitps://iwww.ncbi.nim.nih.gov/pmc/articles/PMC3365860/ 58/125



12/14/22, 8:57 AM Hormones and Endocrine-Disrupting Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses - PMC

ularly if they are NMDRCs (because they are unlikely to all have nonmonotonicity at the same dose
and direction). Thus, NMDRCs are likely to be rarer in the epidemiology literature compared with
studies examining the effects of a wide range of doses of an EDC on animals and cultured cells. Yet it
is also important to ask what can be concluded if a NMDRC is detected in one epidemiology study but
not in others examining the same chemical and outcome. There are several factors that must be con-
sidered. The first is that differences in the populations examined between the two studies could ex-
plain why a monotonic relationship is observed in one group and a nonmonotonic relationship in an-
other (see Fig. 5). The second is that one or more studies may not be statistically designed to detect
NMDRCs. Finally, it is plausible that the NMDRC is an artifact due to residual confounding or some
other factor that was not considered in the experimental design. As more becomes known about the
mechanisms operating in cells, tissues, and organs to generate NMDRCs, our ability to apply this in-
formation to epidemiology studies will increase as well.

4. Tamoxifen flare, a NMDRC observed in cells, animals, and human patients

Although there is controversy in toxicology and risk assessment for endocrine disruptors, NMDRCs
are recognized and used in current human clinical practice, although under a different specific term,
flare. Flare is often reported in the therapy of hormone-dependent cancers such as breast and
prostate cancer. Clinically, failure to recognize the NMDRC that is termed a flare would be considered
malpractice in human medicine.

Tamoxifen flare was described and named as a transient worsening of the symptoms of advanced
breast cancer, particularly metastases to bone associated with increased pain, seen shortly after the
initiation of therapy in some patients (543). If the therapy could be continued, the patients showing
tamoxifen flare demonstrated a very high likelihood of subsequent response to tamoxifen, including
arrest of tumor growth and progression of symptoms for some time.

The subsequent mechanism of the flare was described in basic lab studies in athymic mouse models
of human hormone-dependent breast cancer xenografts (544) and in tissue culture of hormone-de-
pendent human breast cancer cells (545-547). In these models, it was observed that although high,
therapeutic concentrations of tamoxifen inhibited estrogen-stimulated proliferation of breast cancer
cells, lower concentrations of tamoxifen actually stimulated breast cancer cell growth as long as the
cells were estrogen dependent (548). Tamoxifen was also shown to disrupt tissue organization of the
mammary gland, with specific effects on the stroma that may contribute to the observed effects on
proliferation of epithelial cells (549, 550).

Tamoxifen therapy is administered as 10 mg twice per day (20 mg/d; approx 0.3 mg/kg body weight
per day), but the target circulating levels are in the near submicromolar range (0.2-0.6 pm); these
levels are reached slowly, after approximately 2 wks of therapy (551). In the initial period, where ta-
moxifen flare is observed, the circulating concentrations are ascending through lower concentrations,
in the range below therapeutic suppression of growth, where breast cancer cell proliferation is actu-
ally stimulated by the drug, both in tissue culture, in animal xenograft studies, and in human patients
(reviewed in Ref. 548). The recognition of this dual dose-response range for tamoxifen (low-dose,
low-concentration estrogenic growth-stimulatory and higher-dose, higher-concentration estrogenic
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growth-inhibitory responses) led to the definition of the term selective estrogen response modulator,
or SERM, activity (552-554). This SERM activity has since been observed for many or even most es-
trogenic EDCs, including BPA (3, 555-557).

These observations defined three separate dose-response ranges for the SERM tamoxifen in human
clinical use. The lowest dose-response range, the range of flare, stimulated breast cancer growth and
symptoms in some patients with hormone-dependent cancer. The next higher dose-response range is
the therapeutic range where tamoxifen inhibits estrogen-dependent tumor growth. The highest dose
range causes acute toxicity by the SERM (see Fig. 6).

B4 RLC S I £ € S 3

Figure 6.

Dose-response ranges for tamoxifen in breast cancer therapy. This figure demonstrates the NMDRC, also called flare,
in tamoxifen treatments. As the circulating dose of tamoxifen increases when treatment starts, patients initially expe-
rience flare, i.e. growth of the tumor (546), followed by a decrease in tumor size as the circulating levels of tamoxifen
rise into the therapeutic range (676, 677). High doses of tamoxifen are acutely toxic (546). Starting from the highest
concentrations, where acute toxicity is observed, and going to lower concentrations on the X-axis, the acute toxicity
diminishes towards zero growth, i.e. therapeutic stasis (green baseline). This occurs at approximately 1E-05 m, the
lowest observed effect level (LOEL) for toxicity. The vertical arrows show the results of applying three or four 10-fold
safety factors to the LOEL for the high-dose toxicity of tamoxifen, and would calculate a safe or reference dose for ta-
moxifen in the region of flare, the least safe region of exposure in actual practice. Above the diagram of dose response
ranges is estimated ER occupancy by tamoxifen. This was calculated from the affinity constant of tamoxifen for ERs
determined in human breast cancer cells (Ki = 29.1 nM; Ref 678); flare appears to correspond to low receptor occu-
pancy (blue axis), therapeutic range with mid and upper-range receptor occupancy, and acute toxicity well above 99%
receptor occupancy. (678).

Tamoxifen provides an excellent example for how high-dose testing cannot be used to predict the ef-
fects of low doses. For tamoxifen (as for other drugs), the range of acute human toxicity for tamox-
ifen was determined in phase I clinical trials. Phase I trials also defined an initial therapeutic range,
the second dose-response range, as a dose below which acute toxicity was not observed. The thera-
peutic dose range was tested and further defined in phase II and later clinical trials to determine effi-
cacy (see for example Ref. 558). Standard toxicological testing from high doses to define a LOAEL or
NOAEL are equivalent to the phase I clinical testing, and in risk assessment, a safe dose or reference
dose is calculated from these tests. However, the lowest dose range, with the highly adverse effects
termed flare, was not detected in the phase I trials and was determined only for tamoxifen in breast
cancer therapy at the therapeutic doses (543). The implication for risk assessment is that NMDRCs
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for EDCs, particularly those already identified as SERMs, would likely not be detected by standard
toxicological testing at high doses. That is, the consequence of high-dose testing is the calculation of a
defined but otherwise untested safe dose that is well within the range equivalent to flare, i.e. a mani-
festly unsafe dose of the EDC (Fig, 6).

5. Similarities in endpoints across cell culture, animal, and epidemiology studies: evidence for common

mechanisms?

There are common trends in some findings of NMDRCs in cell, animal, and human studies and there-
fore evidence for related mechanisms for NMDRCs at various levels of biological complexity.
Tamoxifen flare, discussed in Section I11.C.4, is an informative example. Another illustrative example is
that of the effect of the hormone leptin (Fig. 7). In cultured primary adipocytes, NMDRCs are ob-
served after leptin exposure; moderate doses of leptin significantly reduce insulin-mediated glucose
intake, whereas low and high doses maintain higher glucose intake in response to insulin (559). The
rat pancreas shows a similar response to leptin; the amount of secreted insulin has an inverted U-
shaped response to leptin (560, 561). Even more striking is the relationship between leptin and food
intake. Rats administered moderate doses of leptin consume less food compared to rats dosed with
low or high levels of leptin (562); mechanistically, this lower food intake could be due to higher circu-
lating glucose levels in these animals due to ineffective insulin action. And finally, in a human study,
leptin levels were found to correlate with body mass index but have a U-shaped relationship with
mortality (563). These results suggest that hormones can produce similar responses at several levels
of biological complexity (cell, organ, animal, and population).
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Figure 7.

Leptin as an example of a NMDRC. Several studies report NMDRCs in response to leptin treatments. A, NMDRCs are
observed in cultured primary adipocytes after leptin exposure. This graph illustrates the relationship between admin-
istered leptin dose and glucose uptake in two types of adipocytes, those isolated from omental tissue (green) and oth-
ers from sc fat (purple) (schematic was made from data in Ref. 559). These data are on a log-linear plot. B, Ex vivo rat
pancreas was treated with leptin and various doses of glucose, and the insulin response curves were examined. Area
under the curve is a measure of the ability of the pancreas to bring glucose levels under control. Different dose-re-
sponse curves were observed depending on the amount of glucose administered: a U-shaped curve when 8 mmol/liter
was included (pink) or a multiphasic curve with 4 mmol/liter (blue) (schematic made from data in Ref. 560}. These
data are on a linear-linear plot. C, U-shaped NMDRCs were also observed when food intake was compared with leptin
levels in the blood of rats administered the hormone. This response was similar in males (orange) and females

(cyan) (schematic made from data in Ref. 562). These data are on a linear-linear plot.

A large number of epidemiology studies with NMDRCs have found relationships between EDC expo-
sures like POPs and metabolic diseases including obesity and diabetes (Table 9) (see also Ref. 564 for
a review), and the mechanisms for these relationships have begun to be explored. Human and animal
cells treated with EDCs in culture display NMDRCs that are relevant to these diseases: BPA has non-
monotonic effects on the expression of adipocyte proteins in preadipocytes and the release of
adiponectin from mature adipocytes (565-567). Similarly, in female rodents, low doses but not high
doses of BPA increased adipose tissue weight and serum leptin concentrations (568), and intermedi-
ate doses of phthalates decrease serum cholesterol levels (569). Thus, although understanding the
mechanisms operating at the cellular level of organization has not yet led to definitive knowledge of
the mechanisms producing NMDRCs in human populations, there appear to be strong similarities in
cells, animals, and humans that support a call for continued work focusing on metabolic disease end-
points at each level of biological organization.

D. NMDRC summary

We have demonstrated that nonmonotonicity is a common occurrence after exposures to hormones
and EDCs in cell culture and animals and across human populations. Because of the abundance of ex-
amples of NMDRCs, we expect that if adequate dose ranges are included in animal and cell culture
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studies, including the use of negative and well-chosen positive controls, NMDRCs may be observed
more often than not. Here, we have focused mainly on studies that examined a wide range of doses,
including many that examined the effects of doses that span the low-dose and toxicological ranges.
We also discussed several mechanisms that produce NMDRCs. Each of these mechanisms can and
does operate at the same time in a biological system, and this cooperative action is ultimately respon-
sible for NMDRCs.

Understanding nonmonotonicity has both theoretical and practical relevance. When a chemical pro-
duces monotonic responses, all doses are expected to produce similar effects whose magnitude
varies with the dose, but when a chemical produces a NMDRC, dissimilar or even opposite effects will
be observed at different doses. Thus, monotonic responses can be modeled using the assumption
that each step in a linear pathway behaves according to the law of mass action (43, 570); high doses
are always expected to produce higher responses. In contrast, NMDRCs are not easy to model (al-
though they are quite easy to test for), requiring detailed knowledge of the specific mechanisms op-
erating in several biological components. From a regulatory standpoint, information from high doses
cannot always be used to assess whether low doses will produce a biological effect (38).

IV. Implications of Low-Dose Effects and Nonmonotonicity

Both low-dose effects and NMDRCs have been observed for a wide variety of EDCs as well as natural
hormones. Importantly, these phenomena encompass every level of biological organization, from
gene expression, hormone production, and cell number to changes in tissue architecture to behavior
and population-based disease risks. One conclusion from this review is that low-dose effects and
NMDRCs are often observed after administration of environmentally relevant doses of EDCs. For
both hormones and EDCs, NMDRCs should be the default assumption absent sufficient data to indi-
cate otherwise. Furthermore, there are well-understood mechanisms to explain how low-dose effects
and NMDRCs manifest in vitro and in vivo. Accepting these phenomena, therefore, should lead to par-
adigm shifts in toxicological studies and will likely also have lasting effects on regulatory science.
Some of these aspects are discussed below. Additionally, we have briefly explored how this knowl-
edge should influence future approaches in human and environmental health.

At a very practical level, we recommend that researchers publishing data with low-dose and non-
monotonic effects include key words in the abstract/article that identify them as such specifically. This
review was unquestionably impeded because this has not been standard practice. We also strongly
recommend that data showing nonmonotonic and binary response patterns not be rejected or criti-
cized because there is no dose response.

A. Experimental design

1. Dose ranges must be chosen carefully

To detect low-dose effects or NMDRCs, the doses included for testing are of utmost importance. Most
of the studies we examined here for nonmonotonicity tested doses over severalfold concentrations.
Unfortunately, regulatory guidelines only require that three doses be tested. Both low-dose effects
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and NMDRCs can be observed when examining only a few doses, but some studies may detect signifi-
cant results purely by luck, because a small shift in dose can have a large impact on the ability to ob-
serve differences relative to untreated controls.

In the multitude of chemicals that have never been tested at low doses, or in the development of new
chemicals, to determine whether a chemical has low-dose effects in laboratory animals, we suggest
setting the NOAEL or LOAEL from traditional toxicological studies as the highest dose in experiments
specifically designed to test endocrine-sensitive endpoints. We suggest setting the lowest dose in the
experiment below the range of human exposures, if such a dose is known. Several intermediate doses
overlapping the range of typical human exposures should be included also, bringing the total number
in the range of five to eight total doses tested. Importantly, although the levels of many environmental
chemicals in human blood and/or urine have been reported by the CDC and other groups responsi-
ble for population-scale biomonitoring, it is often not known what administered doses are needed to
achieve these internal exposure levels in animals (4, 253); thus, toxicokinetic studies are often
needed before the onset of low-dose testing. This is important because the critical issue is to deter-
mine what effects are observed in animals when circulating levels of an EDC match what is measured
in the typical human. Due to differences in metabolism, route of exposure, and other factors, a rela-
tively high dose may need to be administered to a rodent to produce blood concentrations in the
range of human levels; however, this should not be considered a high-dose study.

It has also been suggested that animal studies that are used to understand the potential effects of a
chemical on humans should use a relevant route of administration to recapitulate human exposures
(571, 572) because there may be differences in metabolism after oral and nonoral administration.
Many chemicals that enter the body orally undergo first-pass metabolism and are then inactivated via
liver enzymes, whereas other routes (i.e. sc) can bypass these mechanisms and lead to a higher con-
centration of the active compound in circulation (573). Studies indicate, however, that inactivation of
chemicals via first-pass metabolism is not complete and also that deconjugation of metabolites can
occur in some tissues allowing the re-release of the active form (574, 575). Additionally, for some
chemicals, it is clear that route of administration has little or no impact on the availability of the active
compound in the body (241, 384), and other studies show that route of administration has no impact
on the biological effects of these chemicals; i.e. regardless of how it enters the body, dioxin has simi-
lar effects on exposed individuals (384), and comparable results have been observed for BPA (141).
Although understanding the typical route of human exposure to each environmental chemical is an
important task, it has been argued that any method that leads to blood concentrations of a test chem-
ical in the range they are observed in humans is an acceptable exposure protocol, and this is espe-
cially true with gestational exposures, because fetuses are exposed to chemicals only via their moth-
ers' blood (31, 576).

2. Timing of exposures is important

Rodent studies indicate that EDC exposures during development have organizational effects, with
permanent effects that can manifest even in late adulthood, whereas exposures after puberty are for
the most part activational, with effects that are abrogated when exposures cease. For example, the
adult uterus requires relatively large doses of BPA (in the parts-per-million range) to induce changes
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associated with the uterotrophic assay (555, 577), whereas parts-per-trillion and ppb exposures dur-
ing the fetal period permanently and effectively alter development of the uterus (279, 310, 578).
Thus, the timing of exposures is profoundly important to detect low-dose effects of EDCs.

Human studies also support this conclusion. The 1976 explosion of a chemical plant in Seveso, Italy,
which led to widespread human exposure to large amounts of TCDD, a particularly toxic form of
dioxin, and the deposition of this chemical on the land surrounding the chemical plant, provided evi-
dence in support of the organizational and activational effects of endocrine-active chemicals in hu-
mans (5792). Serum TCDD concentrations showed correlations between exposure levels and several
disease outcomes including breast cancer risk, abnormal menstrual cycles, and endometriosis (580~
582}, butindividuals who were either infants or teenagers at the time of the explosion were found to
be at greatest risk for developing adult diseases (583, 584). Importantly, many scientists have argued
that organizational effects can occur during puberty, i.e. that the period where hormones have irre-
versible effects on organ development extends beyond the fetal and neonatal period (585), and for
some endpoints this appears to be the case (586, 587).

It has also been proposed that the endocrine system maintains homeostasis in the face of environ-
mental insults (210). The adult endocrine system does appear to provide some ability to maintain a
type of homeostasis; when the pharmaceutical estrogen DES is administered to pregnant mice, the
circulating estradiol concentrations in the dam respond by decreasing linearly (224). In contrast, fetal
concentrations of estradiol respond nonmonotonically in a way that is clearly not correlated with ma-
ternal levels. Similarly, there is evidence that BPA can induce aromatase and therefore increase estra-
diol levels in situ in the fetal urogenital sinus (588). This is an example of a feed-forward positive-
feedback effect rather than a homeostatic response. The effects of EDCs on adult subjects, both ani-
mal and people, suggest that diseases often result from low-dose adult exposures (589-595); this ar-
gues against a view of the endocrine system as a means to maintain homeostatic control. Instead, in-
dividuals can be permanently changed, in an adverse way, after EDC exposures.

In one example, pregnant mice were exposed to low concentrations of BPA, and their male offspring
had altered pancreatic function at 6 months of age (158). Surprisingly, however, the mothers (ex-
posed only during pregnancy) were also affected, with altered metabolic machinery and body weight
at 4 months postpartum, long after exposures had ended. The increased incidence of breast cancer in
women that took DES during pregnancy also illustrates this point (596, 597). These studies suggest
that even the adult endocrine system is not invariably capable of maintaining a so-called homeostatic
state when exogenous chemicals affecting the endocrine system are present. Thus, although adult ex-
posures to EDCs have been given some attention by bench scientists (29), more work of this kind is
needed to better understand whether and how EDCs can have permanent organizational effects on
adult animals.

At the beginning of this review, we justified the need to critically examine the low-dose literature be-
cause of recent epidemiological findings linking EDC exposures and diseases. Yet there is inherent dif-
ficulty in examining neonatal exposures to EDCs and their connection to diseases due to the length of
time needed for these studies; thus, many studies of this type have examined high doses of pharma-
ceuticals (i.e. DES) or accidental exposures to industrial chemicals (i.e. dioxin) (66, 398, 399, 581,
597-601).
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Only recently, with the availability of biomonitoring samples from large reference populations, have
lower doses begun to receive widespread attention from epidemiologists. Many recent studies have
examined adult exposures to EDCs and correlated exposures with disease statuses (see for example
Refs. 15, 16, and 602-604). Human studies examining fetal/neonatal exposures to low-dose EDCs
and early life effects have also begun to be studied (6, 333, 605-607), although studies linking these
early life exposures to adult diseases are likely to be decades away. More than anything, these studies
support our view that the effects of low-dose exposures should be considered when determining
chemical safety.

3. Importance of endpoints being examined

Traditional toxicology testing, and in particular those studies performed for the purposes of risk as-
sessment, typically adhere to guideline studies that have been approved by international committees
of experts (608). The endpoints assessed in these guideline-compliant studies are centered around
higher-order levels, including weight loss, mortality, changes in organ weight, and a limited number of
histopathological analyses (609, 610). When pregnant animals are included in toxicological assess-
ments, the endpoints measured typically include the ability to maintain pregnancies, the number of
offspring delivered, sex ratios of surviving pups, and measures regarding maternal weight gain and
food/water intake (610).

Yet low-dose EDCs are rarely toxic to the point of killing adult animals or causing spontaneous abor-
tions, and traditional tests such as the uterotrophic assay have been shown to be relatively insensitive
(72, 577). It has been argued that this type of testing is insufficient for understanding the effects of
EDCs (31, 70, 495, 611). Many EDC studies have instead focused on examining newly developed,
highly sensitive endpoints that span multiple levels of biological organization, from gene expression
to tissue organization to organ systems to the whole animal (612), which may not be rapidly lethal
but which nonetheless have enormous importance for health, including mortality. Thus, for example,
studies designed to examine the effects of chemicals on obesity no longer focus on body weight alone
but also analyze gene expression; fat content in adipose cells and the process of adipogenesis; inflam-
mation, innvervation, and vascularization parameters in specific fat pads; conversion rates of white
and brown adipose tissues; systemic hormone levels and response to glucose and insulin challenges;
and food intake and energy expenditures, among others (314, 613-615). As our knowledge of EDCs
and the endocrine system continue to grow, the most sensitive endpoints should be used to deter-
mine whether a chemical is disrupting the development of organisms (70).

In moving beyond traditional, well-characterized health-related endpoints like mortality and weight
loss, an important question has been raised: how do we define endpoints as adverse? This is an im-
portant point, because it has been suggested that the endpoints examined in independent EDC stud-
ies are not validated and may not represent adverse effects (609). There is also debate over whether
the mechanism (or mode) of action must be explained for each effect to determine whether a rele-
vant pathway is present in humans (616, 617). Yet, when originally assessing the low-dose literature,
the NTP expert panel chose to examine all effects of EDC exposure, regardless of whether the end-
point could be deemed adverse (2). From the perspective of developmental biology, any change in
development should be seen as adverse, even if the change itself is not associated with a disease or
dysfunction. Some of these developmental changes, in fact, may increase sensitivity or susceptibility
to disease later on in life but will otherwise appear normal. Furthermore, studies of heavy metals
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have shown that small shifts in parameters like IQ may not have drastic effects on individuals but can
have serious repercussions on the population level (618), and therefore changes in the
variance/observable range of a phenotype should also be considered adverse (52).

4. Importance of study size

National Institutes of Health guidelines require that the number of vertebrate animals used in experi-
ments be as small as possible to show statistically significant effects based on power analysis. Yet
many traditional toxicology studies have used large numbers of animals to draw conclusions about
chemical safety. When the endpoints being assessed have binary outcomes (i.e. animal has a tumor vs.
animal does not have a tumor) and the incidence of the phenotype is not high, a large number of ani-
mals is required to reveal statistically significant effects. In contrast, many of the endpoints examined
in the field of endocrine disruption are more complex and are not binary; thus, power analysis allows
researchers to determine how many animals are needed to observe statistically significant (and bio-
logically relevant) differences between control and exposed populations. For this reason, arbitrary
numbers set as cutoffs for determining whether a study is acceptable or unacceptable for risk assess-
ments are not appropriate. Instead, the number of animals required for a study to be complete is de-
pendent on the effect size, precision/variance, minimal meaningful difference to be considered be-
tween populations, and the a-value set in statistical tests.

B. Regulatory science

For decades, regulatory agencies have tested, or approved testing, of chemicals by examining high
doses and then extrapolating down from the NOAEL, NOEL, and LOAEL to determine safe levels for
humans and/or wildlife. As discussed earlier, these extrapolations use safety factors that acknowl-
edge differences between humans and animals, exposures of vulnerable populations, interspecies
variability, and other uncertainty factors. These safety factors are informed guesses, not quantita-
tively based calculations. Using this traditional way of setting safe doses, the levels declared safe are
never in fact tested. Doses in the range of human exposures are therefore also unlikely to be tested.
This has generated the current state of science, where many chemicals of concern have never been
examined at environmentally relevant low doses (see Table 4 for a small number of examples).

Assumptions used in chemical risk assessments to estimate a threshold dose below which daily expo-
sure to a chemical is estimated to be safe are false for EDCs. First, experimental data provide evi-
dence for the lack of a threshold for EDCs (619). More broadly, the data in this review demonstrate
that the central assumption underlying the use of high doses to predict low-dose effects will lead to
false estimates of safety. The use of only a few high doses is based on the assumption that all dose-re-
sponse relationships are monotonic and therefore that it is appropriate to apply a log-linear extrapo-
lation from high-dose testing to estimate a safe reference dose (Fig.4). The Endocrine Society issued
a position statement on EDCs (620) and urged the risk assessment community to use the expertise of
their members to develop new approaches to chemical risk assessments for EDCs based on princi-
ples of endocrinology. Undertaking this mission will represent a true paradigm shift in regulatory tox-
icology (79). The Endocrine Society statement was then supported in March 2011 by a letter to
Science from eight societies with relevant expertise representing over 40,000 scientists and medical
professionals (621).
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Studies conducted for the purposes of risk assessment are expected to include three doses: a dose
that has no effects on traditional toxicological endpoints (the NOAEL), a higher dose with effects on
traditional endpoints (the LOAEL), and an even higher dose that shows toxicity. Although reducing
the number of animals used for these types of studies is an important goal, more than three doses
are often needed for a true picture of a chemical's toxicity. The examination of a larger number of
doses would allow for 1) the study of chemicals at the reference dose, i.e. the dose that is calculated
to be safe; 2) examination of doses in the range of actual human exposures, which is likely to be be-
low the reference dose; and 3) the ability to detect NMDRCs, particularly in the low-dose range. The
impact of testing more doses on the numbers of animals required can be mitigated by use of power
analysis, as suggested above. Because no amount of research will ever match the diversity and reality
of actual human experience, there should be ongoing epidemiological study of potential adverse ef-
fects of EDCs even after safe levels are published, with periodic reevaluation of those safe levels.

One issue that has been raised by regulatory agencies is whether animal models are appropriate for
understanding the effects of EDCs on humans. These arguments largely center around observed dif-
ferences in hormone levels during different physiological periods in rodents and humans (57), and
differences in the metabolic machinery and excretion of chemicals between species (622). To address
the first issue, it should be noted that the FDA uses animals to test pharmaceuticals and other chemi-
cals before any safety testing in humans because it is widely recognized that, although animals and
humans do not have exactly the same physiologies, there is evolutionary conservation among verte-
brates and specifically among mammals (62). Furthermore, animal studies proved to be highly pre-
dictive of the effects of DES on women, indicating that rodents are sufficiently similar to humans to
reliably forecast affected endpoints in the endocrine system (64, 623). Thus, the default position must
be that animal data are indicative of human effects until proven otherwise.

With regard to the second issue, BPA researchers in particular have examined species-specific differ-
ences in metabolism of this EDC. Interestingly, the pharmacokinetics of BPA in rodents, monkeys, and
humans appear to be very similar (624), and regulatory agencies have subsequently concluded that
rodents are appropriate models to assess the effects of this chemical (625, 626). Thus, researchers
should select animal models that are sensitive to low doses of hormones and select appropriate
species for the endpoints of interest. As the scope of our knowledge has broadened about how
chemicals can alter the endocrine system, well beyond estrogens, androgens, and the thyroid, it is im-
perative that considerable thought be given to how to apply this for regulatory purposes.

C. Human health

As discussed several times throughout this review, there is now substantial evidence that low doses
of EDCs have adverse effects on human health. Thus, although many epidemiological studies origi-
nally focused on occupationally exposed individuals and individuals affected by accidental exposures
to high doses of environmental chemicals, these recent studies have suggested wide-ranging effects
of EDCs on the general population.

Importantly, human exposures are examples of true mixtures; dozens if not hundreds of environ-
mental chemicals are regularly detected in human tissues and fluids (91), yet very little is known
about how these chemicals act in combination (627). Several studies indicate that EDCs can have ad-
ditive or even synergistic effects (143, 323, 628-630), and thus these mixtures are likely to have un-
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expected and unpredictable effects on animals and humans. The study of mixtures is a growing and
complex field that will require considerable attention in the years ahead as knowledge of EDCs in the
laboratory setting are applied to human populations (631, 632).

How much will human health improve by testing chemicals at low, environmentally relevant doses
and using the results to guide safety determinations? Current testing paradigms are missing impor-
tant, sensitive endpoints; because they are often unable to detect NMDRCs, they cannot make appro-
priate predictions about what effects are occurring at low doses. At this time, it is not possible to
quantify the total costs of low-dose exposures to EDCs. However, current epidemiology studies link-
ing low-dose EDC exposures to a myriad of health problems, diseases, and disorders suggest that the
costs of current low-dose exposures are likely to be substantial.

The weight of the available evidence suggests that EDCs affect a wide range of human health end-
points that manifest at different stages of life, from neonatal and infant periods to the aging adult. As
the American population ages, healthcare costs continue to rise, and there are societal costs as well,
with decreased quality of life concerns, decreases in work productivity due to illness or the need for
workers to care for affected family members, and the psychological stresses of dealing with some
outcomes like infertility. Thus, it is logical to conclude that low-dose testing, followed by regulatory ac-
tion to minimize or eliminate human exposures to EDCs, could significantly benefit human health.
This proposal effectively calls for greatly expanded research to give human communities feedback
about themselves. It emanates from a view that human society benefits greatly from the many chemi-
cal compounds it uses but that extensive epidemiological surveillance and other focused research de-
signs are needed to assure that the balance of risk/benefit from those chemicals is acceptable.

How much would human health benefit by a reduction in the use of EDCs? For some chemicals, mi-
nor changes in consumer habits or industrial practices can have drastic effects on exposures (633-
636). Other chemicals like DDT that have been regulated in the United States for decades continue to
be detected in human and environmental samples; the persistent nature of many of these agents sug-
gests they may impact human health for decades to come. Even less-persistent chemicals like BPA are
likely to remain in our environment long after a ban is enacted because of the large amounts of plas-
tic waste leaching BPA (and other estrogenic compounds) from landfills into water sources (637) and
its presence on thermal receipt paper and from there into recycled paper (638-640). Yet, despite
these challenges, reducing human exposure to EDCs should be a priority, and one way to address
that priority is to decrease the production and use of these chemicals. The Endocrine Society has
called for such a reduction and the use of the precautionary principle, ie. action in the presence of
concerning information but in the absence of certainty to eliminate or cut the use of questionable
chemicals even when cause-effect relationships are not yet established (620).

D. Wildlife

Much of the recent focus on EDCs has been on the impact of these chemicals on human health. Yet
the earliest studies of EDCs that focused on the impact of these chemicals on wildlife should not be
forgotten. Rachel Carson’s work on DDT and other pesticides provided some of the earliest warning
signs that there were unintended consequences of chemical use. Carson's work was ahead of its time;
she understood that exceedingly small doses of these chemicals produced adverse effects, that the
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timing of exposures was critical, and that chemical mixtures produced compounded effects (641).
Now, decades after some of the most dangerous EDCs have been regulated, they continue to be mea-
sured in environmental samples as well as the bodies of wildlife animals.

Furthermore, it should be pointed out that humans, like wildlife, are not insulated from the environ-
ment, and effects in wildlife, including nonmammalian species, are indicative of and mirror effects in
humans. For example, BPA has estrogen-like effects in fish (642-644), amphibians (645, 646), and
reptiles (647, 648). A recent review showed that demasculinizing and feminizing effects of atrazine
have been demonstrated in fish, amphibians, reptiles, birds, and mammals, i.e. every vertebrate class
examined (326); and in fact, the first report to suggest that atrazine induced aromatase was con-
ducted in reptiles (649). Similarly, perchlorate affects fish (650-653), amphibians (654-658), and
birds (659-661) via mechanisms consistent with those described for humans, and some of the earli-
est reports on perchlorate's effects on thyroid function were conducted in amphibians (661, 662).
Finally, ecological studies of dioxin and dioxin-like chemicals reveal effects on a range of exposed
wildlife including birds (663, 664), fish (665, 666), and invertebrates (667). Although these studies
have highlighted some of the species-specific effects of dioxin (389), and orders of magnitude differ-
ences in toxic equivalency factors between species (668), they also indicate the conservation of mech-
anisms for the effects of dioxin on a range of biological endpoints in wildlife, laboratory animals, and
humans (384). In fact, in many cases, nonmammalian species are much more sensitive to EDC effects,
and wildlife species serve as sentinels for environmental and public health (669-673). Thus, the ef-
fects of these chemicals on wildlife populations are likely to continue; for this reason, the low-dose ef-
fects of these chemicals are particularly worth understanding (674, 675).

V. Summary
In conclusion, we have provided hundreds of examples that clearly show that NMDRCs and low-dose
effects are common in studies of hormones and EDCs. We have examined each of these issues sepa-
rately and provided mechanistic explanations and examples of both. These topics are related, but
they must be examined individually to be understood. The concept of nonmonotonicity is an essential
one for the field of environmental health science because when NMDRCs occur, the effects of low
doses cannot be predicted by the effects observed at high doses. In addition, the finding that chemi-
cals have adverse effects on animals and humans in the range of environmental exposures clearly in-
dicates that low doses cannot be ignored.

In closing, we encourage scientists and journal editors to publish data demonstrating NMDRCs and
low-dose effects, even if the exact mechanism of action has not yet been elucidated. This is important
because the study of EDC is a growing specialty that crosses many scientific fields, and scientists that
work on or regulate EDCs should appreciate and acknowledge the existence of NMDRCs and low-
dose effects and have access to this important information. We further recommend greatly expanded
and generalized safety testing and surveillance to detect potential adverse effects of this broad class
of chemicals. Before new chemicals are developed, a wider range of doses, extending into the low-
dose range, should be fully tested. And finally, we envision that the concepts and empirical results we
have presented in this paper will lead to many more collaborations among research scientists in aca-
demic and government laboratories across the globe, that more and more sophisticated study de-
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signs will emerge, that what we have produced herein will facilitate those making regulatory deci-
sions, that actions taken in light of this information will begin to abate the use of EDCs, and ultimately
that health impacts in people and in wildlife will be averted.
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Footnotes
Abbreviations:

A4  Androstenedione

AhR  aryl hydrocarbon receptor

BPA  bisphenol A

CDC Centers for Disease Control and Prevention
DDE dichlorodiphenyldichloroethylene

BDT dichlorodiphenyltrichloroethane

DES diethyistilbestrol

EDC endocrine-disrupting chemical

EPA  Environmental Protection Agency

ER estrogen receptor
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FDA Food and Drug Administration
GLP good laboratory practices
LOAEL lowest observed adverse effect level
mER membrane-associated ER
NHANES National Health and Nutrition Examination Survey
NIS sodium/iodide symporter
NMDRC nonmonotonic dose-response curve
NOEL no observed effect level
NOAEL no observed adverse effect level
NTP National Toxicology Program
PIN prostatic intraepithelial neoplasias
POP persistent organic pollutants
ppb parts per billion
SERM selective ER modulator
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
WoE weight of evidence.
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Low Doses Matter < https:/chej.org/low-doses-matter>

2, By Stephen Lester < hitps://chej.org/author/stephen-lester>

) March 19, 2012 < https://chej.org/low-doses-matter>

You were right.

How often have you been told that the levels of a particular chemical
found in the ait, soil or water are very low and thus not significant, or
that the risks are so low that there is no cause for alarm? This is what
EPA said about dioxin just about 2 month ago when they released its
non-cancer report. Now a new scientific report is helping make the

case that most people living in a contaminated community have known
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range of chemicals including many found in the environment, our
food, and many consumer products such as plastics, pesticides, and
cosmetics. The researchers found “overwhelming evidence that these
hormones é.ltering chemicals have effects at low doses and that these
effects are often completely different than effects at high levels.” Low
doses are defined as levels occurring in the range of typical human

CXPO sure.

This is a remarkable paper. It sayé and supports what community
leaders having been saying for years — low dose exposures are
damaging people’s health and the way scientists evaluate health risks
using risk assessment no longer works. One of the key conclusions in
this paper is that “the effects of low doses cannot be predicted by the
effects observed at high doses.” This paper needs to be read by every
regulating agency at the state and federal level because it opens the
door to a new way of thinking about heath risks. No longer is it
enough or even good science to evaluate health risks using traditional
dose response thinking that accepts effects at high doses, but not at

low doses.

As noted in an earlier blog < http://chej.org/backyard-
talk/?bib_page_offset=65> , Linda Birnbaum, director of the
National Institute for Environmental Health Sciences, described this

traditional approach to evaluating health risks as “antiquated” and that
it needs to be replaced by a “better understanding of the actual
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